Efficient Kernel Smoothing Regression using KD-Tree
Kernel regression is a power full tool for smoothing, image and signal processing, etc. However, it is computationally expensive when it is extented for multivariant cases. The efficiency can be improved by only using neighbors within the effective range arond a regression point. To improve the efficiency further, the kd-tree tool developed by Steven Michael http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=7030&objectType=file is used to efficiently identify points within a range. For large data sets, this code can reduce computation time by 3 to 5 times.
Citar como
Yi Cao (2026). Efficient Kernel Smoothing Regression using KD-Tree (https://la.mathworks.com/matlabcentral/fileexchange/19308-efficient-kernel-smoothing-regression-using-kd-tree), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Compatibilidad con las plataformas
Windows macOS LinuxCategorías
Etiquetas
Agradecimientos
Inspirado por: KD Tree Nearest Neighbor and Range Search, Multivariant Kernel Regression and Smoothing
Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
| Versión | Publicado | Notas de la versión | |
|---|---|---|---|
| 1.0.0.0 |
