Noise variance estimation

EVAR estimates the noise variance from 1-D to N-D data
6K Descargas
Actualizado 20 jun 2020

Ver licencia

Suppose that you have a signal Y (Y can be a time series, a parametric surface or a volumetric data series) corrupted by a Gaussian noise with unknown variance. It is often of interest to know more about this variance. EVAR(Y) thus returns an estimated variance of the additive noise.

EVAR provides better results if the original function (i.e. the function without noise) is relatively smooth i.e. has continuous derivatives up to some order. Several tests, however, showed that EVAR works very well even with multiple discontinuities.

Note: EVAR only works with evenly-gridded data in one and higher dimensions.

Here are two examples:

%-- Let us estimate the noise variance from a corrupt signal --
% First create a time signal
t = linspace(0,100,1e6);
y = cos(t/10)+(t/50);
% Make this signal corrupted by a Gaussian noise of variance 0.02
var0 = 0.02; % noise variance
yn = y + sqrt(var0)*randn(size(y));
% Now estimate the variance with EVAR and compare with the "true" value
evar(yn)

%-- Now, let us estimate the noise variance from volumetric data --
% Create a volume array
[x,y,z] = meshgrid(-2:.2:2,-2:.2:2,-2:.2:2);
f = x.*exp(-x.^2-y.^2-z.^2);
% Make these data corrupted by a Gaussian noise of variance 0.5
var0 = 0.5; % noise variance
fn = f + sqrt(var0)*randn(size(f));
% Estimate the variance with EVAR and compare with the "true" value
evar(fn)

-----
Reference:
Garcia D. Robust smoothing of gridded data in one and higher dimensions with missing values.
Comput Statist Data Anal, 2010;54:1167-1178
http://www.biomecardio.com/publis/csda10.pdf
------
Several examples are also given in:
http://www.biomecardio.com/matlab/evar_doc.html
-----

Citar como

Damien Garcia (2024). Noise variance estimation (https://www.mathworks.com/matlabcentral/fileexchange/25645-noise-variance-estimation), MATLAB Central File Exchange. Recuperado .

Garcia, Damien. “Robust Smoothing of Gridded Data in One and Higher Dimensions with Missing Values.” Computational Statistics & Data Analysis, vol. 54, no. 4, Elsevier BV, Apr. 2010, pp. 1167–78, doi:10.1016/j.csda.2009.09.020.

Ver más estilos
Compatibilidad con la versión de MATLAB
Se creó con R2010a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Agradecimientos

Inspirado por: Estimatenoise

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.6.1

"narginchk" has been included

1.6.0.0

updated links + nested function DCTN

1.5.0.0

DCTN function is now included in EVAR

1.4.0.0

A minor improvement

1.3.0.0

The upper and lower bounds for FMINBND are calculated according to the tensor rank of the input array

1.2.0.0

optimset options have been modified

1.1.0.0

A better description

1.0.0.0