Linear Discriminant Analysis Code

Versión 1.1.0.0 (1,95 KB) por Muhammet
this function converts data from its original space to LDA space.
2,5K Descargas
Actualizado 16 nov 2011

Ver licencia

% [sLDA WLDA M WPCA]=mylda(data,class,n)
% this function written by muhammet balcilar
% yildiz technical university computer engineering department
% istanbul turkiye 2011

% this function convert data from its original space to LDA space
% if number of data samples is less than number of diamension, PCA is
% implemented for reducing number of diamension to #samples-1.
% after PCA, LDA is implemented for reducing diamention to n.

% data is consist of M rows(sample size), N cols(dimensions)
% class is consist of M rows(sample size), 1 cols , each element of class
% is shows class number of each data sample
% (class number must be integer 1 to classsize)
% n is the number of outputs data diamensions.(optionally)
% sLDA is consist of M rows(sample size) n cols(new dimensions)
% WPCA is translate matrix which convert to original space to PCA space
% M is the mean vector of training set
% WLDA is the translate matrix which convert to original space to LDA space
% exaple: there are 4 samples which have 5 diamensions.first two samples
% are member of class 1 others are member of class 2.
% Train= [5.6,5.7,5.5,5.7 5.6;
% 5.7,5.3,5.1,5.0 5.2;
% 10.6,9.9,10.4,10.7 10.2;
% 10.7,9.8,9.9,10 10];
% Class=[1;1;2;2];
% [sLDA WLDA M WPCA]=mylda(Train,Class)
% Test= [4.9 5.5 4.8 5.7 5];
% LDATEST = (Test-M)*WPCA*WLDA

Citar como

Muhammet (2026). Linear Discriminant Analysis Code (https://la.mathworks.com/matlabcentral/fileexchange/33768-linear-discriminant-analysis-code), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2008a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Categorías
Más información sobre Statistics and Machine Learning Toolbox en Help Center y MATLAB Answers.
Versión Publicado Notas de la versión
1.1.0.0

output parameters are changed

1.0.0.0