Correlation based dynamic time warping of multivariate time series

Combines DTW and PCA based similarity measures.
1,3K Descargas
Actualizado 9 jul 2014

Ver licencia

A novel algorithm called correlation based dynamic time warping (CBDTW) wich combines DTW and PCA based similarity measures. To preserve correlation, multivariate time series are segmented and the local dissimilarity function of DTW originated from SPCA. The segments are obtained by bottom-up segmentation using special, PCA related costs. Our novel technique qualitified on two databases, the database of signature verification competition 2004 and the commonly used AUSLAN dataset. We show that CBDTW outperforms the standard SPCA and the most commonly used, Euclidean distance based multivariate DTW in case of datasets wich complex correlation structure.

The algorithm is also described in:
J. Abonyi, F. Szeifert, Supervised fuzzy clustering for the identification of fuzzy classifiers, Pattern Recognition Letters, 24(14) 2195-2207, October 2003

Citar como

Janos Abonyi (2026). Correlation based dynamic time warping of multivariate time series (https://la.mathworks.com/matlabcentral/fileexchange/47159-correlation-based-dynamic-time-warping-of-multivariate-time-series), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R14SP1
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Categorías
Más información sobre Time Series en Help Center y MATLAB Answers.
Versión Publicado Notas de la versión
1.0.0.0