2D Heat Equation Using Finite Difference Method with Steady-State Solution
This code is designed to solve the heat equation in a 2D plate.
Using fixed boundary conditions "Dirichlet Conditions" and initial temperature in all nodes, It can solve until reach steady state with tolerance value selected in the code.
After solution, graphical simulation appears to show you how the heat diffuses throughout the plate within time interval selected in the code.
you can find in the link below a full report about the code with the results for some cases studied using this code and also how to use it.
https://drive.google.com/file/d/0BwE9qaLqIPqSQ1lDTXF6Ry1WT28/view?usp=sharing
Citar como
Amr Mousa (2026). 2D Heat Equation Using Finite Difference Method with Steady-State Solution (https://la.mathworks.com/matlabcentral/fileexchange/55058-2d-heat-equation-using-finite-difference-method-with-steady-state-solution), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Compatibilidad con las plataformas
Windows macOS LinuxCategorías
- Mathematics and Optimization > Partial Differential Equation Toolbox > Domain-Specific Modeling > Structural Mechanics >
Etiquetas
Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
| Versión | Publicado | Notas de la versión | |
|---|---|---|---|
| 1.0.0.0 |
Report Link
|