zeckendorf(N)

versión 1.1.0.0 (1.95 KB) por Karl Ezra Pilario
zeckendorf(N) using a greedy algorithm with binary exponentiation for computing Fib(n)

36 descargas

Actualizada 8 Jun 2018

Ver licencia

Zeckendorf's theorem states that any positive integer, N, can be written as a sum of non-consecutive Fibonacci numbers uniquely. This is achieved by a greedy algorithm: the representation always starts with the largest Fibonacci number <= N.

Here, I used the definition of Fibonacci numbers as:
F(0) = 0
F(1) = 1
F(n) = F(n-1) + F(n-2).

For example: N = 100 = 89 + 8 + 3.

This code outputs the Zeckendorf representation of a positive integer N. Fibonacci numbers are computed using binary exponentiation of the Fibonacci matrix [1 1; 1 0].

Citar como

Karl Ezra Pilario (2022). zeckendorf(N) (https://www.mathworks.com/matlabcentral/fileexchange/67017-zeckendorf-n), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2017a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!