Image Segmentation Based on the Local Center of Mass
These are codes for unsupervised 2D and 3D image segmentation, using an approach based on the local center of mass of regions, described in:
I. Aganj, M. G. Harisinghani, R. Weissleder, and B. Fischl, “Unsupervised medical image segmentation based on the local center of mass,” Scientific Reports, vol. 8, Article no. 13012, 2018.
www.nature.com/articles/s41598-018-31333-5
See EXAMPLE.m for a short tutorial. If available, a GPU can be used to speed up the segmentation.
Citar como
Iman Aganj (2024). Image Segmentation Based on the Local Center of Mass (https://www.mathworks.com/matlabcentral/fileexchange/68561-image-segmentation-based-on-the-local-center-of-mass), MATLAB Central File Exchange. Recuperado .
I. Aganj, M. G. Harisinghani, R. Weissleder, and B. Fischl, “Unsupervised medical image segmentation based on the local center of mass,” Scientific Reports, vol. 8, Article no. 13012, 2018. www.nature.com/articles/s41598-018-31333-5
Compatibilidad con la versión de MATLAB
Compatibilidad con las plataformas
Windows macOS LinuxCategorías
- Image Processing and Computer Vision > Computer Vision Toolbox > Recognition, Object Detection, and Semantic Segmentation > Image Category Classification >
Etiquetas
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.