Multimodal Supervoxel Segmentation

The algorithm used in this code is the modification of the method Simple Linear Iterative Clustering (SLIC) which was proposed by Achanta et
509 Descargas
Actualizado 2 jun 2019

The algorithm used in this code is the modification of the method Simple Linear Iterative Clustering (SLIC) which was proposed by Achanta et al. (2012).
Our method is optimized for medical images such as MRI, CT, etc. The contributions of our codes compared to conventional 2D and 3D superpixel are as follows:
• Multi-modal input (works for single-modal, as well)
• Taking the spatial resolution of the medical images into account, i.e. the voxel resolution in X and Y directions and the slice thickness.

Citar como

Soltaninejad, Mohammadreza, et al. “Supervised Learning Based Multimodal MRI Brain Tumour Segmentation Using Texture Features from Supervoxels.” Computer Methods and Programs in Biomedicine, vol. 157, Elsevier BV, Apr. 2018, pp. 69–84, doi:10.1016/j.cmpb.2018.01.003.

Ver más estilos

MSoltaninejad (2026). Multimodal Supervoxel Segmentation (https://github.com/M-Soltaninejad/MultimodalSupervoxel), GitHub. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2016b
Compatible con cualquier versión desde R2012a
Compatibilidad con las plataformas
Windows macOS Linux

No se pueden descargar versiones que utilicen la rama predeterminada de GitHub

Versión Publicado Notas de la versión
1.0.4

Code description and details updated

1.0.3

"find3.m" is added.
"Supervoxel_3D_MultiProtocol.m" is updated so it runs faster and shows the output supervoxels.

1.0.2

Upload a sample data (used in the paper)

1.0.1

GitHub link added

1.0.0

Para consultar o notificar algún problema sobre este complemento de GitHub, visite el repositorio de GitHub.
Para consultar o notificar algún problema sobre este complemento de GitHub, visite el repositorio de GitHub.