Multimodal Supervoxel Segmentation
The algorithm used in this code is the modification of the method Simple Linear Iterative Clustering (SLIC) which was proposed by Achanta et al. (2012).
Our method is optimized for medical images such as MRI, CT, etc. The contributions of our codes compared to conventional 2D and 3D superpixel are as follows:
• Multi-modal input (works for single-modal, as well)
• Taking the spatial resolution of the medical images into account, i.e. the voxel resolution in X and Y directions and the slice thickness.
Citar como
Soltaninejad, Mohammadreza, et al. “Supervised Learning Based Multimodal MRI Brain Tumour Segmentation Using Texture Features from Supervoxels.” Computer Methods and Programs in Biomedicine, vol. 157, Elsevier BV, Apr. 2018, pp. 69–84, doi:10.1016/j.cmpb.2018.01.003.
MSoltaninejad (2026). Multimodal Supervoxel Segmentation (https://github.com/M-Soltaninejad/MultimodalSupervoxel), GitHub. Recuperado .
Compatibilidad con la versión de MATLAB
Compatibilidad con las plataformas
Windows macOS LinuxCategorías
- Image Processing and Computer Vision > Image Processing Toolbox > Image Segmentation and Analysis > Image Segmentation >
- Sciences > Physics > Medical Physics >
- Engineering > Biomedical Engineering > Biomedical Imaging >
Etiquetas
Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
No se pueden descargar versiones que utilicen la rama predeterminada de GitHub
| Versión | Publicado | Notas de la versión | |
|---|---|---|---|
| 1.0.4 | Code description and details updated |
|
|
| 1.0.3 | "find3.m" is added.
|
|
|
| 1.0.2 | Upload a sample data (used in the paper) |
|
|
| 1.0.1 | GitHub link added |
|
|
| 1.0.0 |
