Skip to content
MathWorks - Mobile View
  • Inicie sesión cuenta de MathWorksInicie sesión cuenta de MathWorks
  • Access your MathWorks Account
    • Mi Cuenta
    • Mi perfil de la comunidad
    • Asociar Licencia
    • Cerrar sesión
  • Productos
  • Soluciones
  • Educación
  • Soporte
  • Comunidad
  • Eventos
  • Obtenga MATLAB
MathWorks
  • Productos
  • Soluciones
  • Educación
  • Soporte
  • Comunidad
  • Eventos
  • Obtenga MATLAB
  • Inicie sesión cuenta de MathWorksInicie sesión cuenta de MathWorks
  • Access your MathWorks Account
    • Mi Cuenta
    • Mi perfil de la comunidad
    • Asociar Licencia
    • Cerrar sesión

Vídeos y webinars

  • MathWorks
  • Vídeos
  • Vídeos-Inicio
  • Buscar
  • Vídeos-Inicio
  • Buscar
  • Comuníquese con ventas
  • Software de prueba
23:59 Video length is 23:59.
  • Description
  • Related Resources

Physics-Informed Machine Learning: Using the Laws of Nature to Improve Generalized Deep Learning Models

Dr. Samuel Raymond, Stanford University

Physics-informed machine learning covers several different approaches to infusing the existing knowledge of the world around us with the powerful techniques in machine learning. One area of intense research attention is using deep learning to augment large-scale simulations of complex systems such as the climate. Here, data from satellites is used with simulation data to predict the evolution of these complex systems. While there is a wealth of data and the computational models have achieved remarkable maturity, the tools used in machine learning are often less constrained than the laws that govern physical processes. Non-physical results can be produced by deep learning predictions unless proper constraints are implemented.

Using Deep Learning Toolbox™ in MATLAB® R2020b, new loss functions can be easily implemented and tested on the fly. To demonstrate, in this talk a simple case of pendulum dynamics will be discussed and the prediction of motion is shown by using two neural networks, one trained with traditional loss function, and one with a physics-based loss function. The results show that the extra constraints allow the network to predict the motion of the system far more accurately than the conventional approach. While this represents a simple proof-of-concept, this model features many common aspects of more complex physical systems and allows for a fast and informative testing platform.

View slides
See all proceedings from MATLAB EXPO 2021

Bridging Wireless Communications Design and Testing with MATLAB

Read white paper

Feedback

Up Next:

30:30
Teaching Physics with MATLAB Through Project-Based Learning

Related Videos:

39:11
Predictive Modeling Using Machine Learning - A Mining Case...
43:19
Using Machine Learning to Model Complex Systems
3:02
Machine Learning with MATLAB Overview
42:45
Signal Processing and Machine Learning Techniques for...
MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

  • Switzerland (English)
  • Switzerland (Deutsch)
  • Switzerland (Français)
  • 中国 (简体中文)
  • 中国 (English)

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • Comuníquese con ventas
  • Software de prueba

MathWorks

Accelerating the pace of engineering and science

MathWorks es el líder en el desarrollo de software de cálculo matemático para ingenieros

Descubra…

Explorar productos

  • MATLAB
  • Simulink
  • Software para estudiantes
  • Soporte para hardware
  • File Exchange

Probar o comprar

  • Descargas
  • Software de prueba
  • Comuníquese con ventas
  • Precios y licencias
  • Cómo comprar

Aprender a utilizar

  • Documentación
  • Tutoriales
  • Ejemplos
  • Vídeos y webinars
  • Formación

Obtener soporte

  • Ayuda para la instalación
  • MATLAB Answers
  • Consultoría
  • Centro de licencias
  • Comuníquese con soporte

Acerca de MathWorks

  • Ofertas de empleo
  • Sala de prensa
  • Misión social
  • Casos prácticos
  • Acerca de MathWorks
  • Select a Web Site United States
  • Centro de confianza
  • Marcas comerciales
  • Política de privacidad
  • Antipiratería
  • Estado de las aplicaciones

© 1994-2022 The MathWorks, Inc.

  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LinkedIn
  • RSS

Únase a la conversación