computeLateralDirectionalFlyingQualities
Calculate dutch roll mode, roll mode, and spiral mode characteristics of state-space model
Syntax
Description
computeLateralDirectionalFlyingQualities(
calculates the lateral-directional flying qualities (dutch roll mode, roll mode, and spiral
mode) characteristics using the linear system state-space model selected in the input dialog
window and compares the results against the specified source document requirements.modelToAnalyze)
calculates lateral-directional flying quality characteristics (dutch roll mode, roll mode,
and spiral mode) using the linear system state-space model provided as an input to the
function.lonFQOut = computeLateralDirectionalFlyingQualities(modelToAnalyze,linSys)
displays the pole-zero map for the linear system state-space model.lonFQOut = computeLateralDirectionalFlyingQualities(modelToAnalyze,linSys,generatePlots)
[
returns the output results structure variable name, lonFQOut,varNameOut] = computeLateralDirectionalFlyingQualities(___,Name,Value)varNameOut, for the
input argument combination in the previous syntax, according to the
Name,Value arguments.
Examples
Calculate the lateral-directional flying qualities of a Simulink® aircraft model.
asbFlightControlAnalysis('6DOF', 'DehavillandBeaverAnalysisModel'); opSpecDefault = DehavillandBeaver6DOFOpSpec('DehavillandBeaverAnalysisModel'); opTrim = trimAirframe('DehavillandBeaverAnalysisModel', opSpecDefault); linSys = linearizeAirframe('DehavillandBeaverAnalysisModel', opTrim); latFlyingQual = computeLateralDirectionalFlyingQualities('DehavillandBeaverAnalysisModel', linSys)
Operating point search report:
---------------------------------
Operating point search report for the Model DehavillandBeaverAnalysisModel.
(Time-Varying Components Evaluated at time t=0)
Operating point specifications were successfully met.
States:
----------
(1.) phi
x: 0.021 dx: -1.12e-20 (0)
(2.) theta
x: 0.0653 dx: 3.91e-22 (0)
(3.) psi
x: 0 dx: -1.7e-20 (0)
(4.) p
x: -1e-20 dx: -7.37e-12 (0)
(5.) q
x: 3.52e-23 dx: 3.42e-10 (0)
(6.) r
x: -1.69e-20 dx: -1.2e-11 (0)
(7.) U
x: 67.3 dx: 1.79e-13 (0)
(8.) v
x: 0.0927 dx: -4.63e-11 (0)
(9.) w
x: 4.4 dx: 2.02e-11 (0)
(10.) Xe
x: -3.86e-13 dx: 67.5
(11.) Ye
x: -1.18e-12 dx: 4.21e-12 (0)
(12.) Ze
x: -2.2e+03 dx: 5.97e-11 (0)
(13.) DehavillandBeaverAnalysisModel/Environment Model/Dryden Wind Turbulence Model (Continuous (+q +r))/Filters on angular rates/Hpgw/pgw_p
x: 0 dx: 0
x: 0 dx: 0
(14.) DehavillandBeaverAnalysisModel/Environment Model/Dryden Wind Turbulence Model (Continuous (+q +r))/Filters on angular rates/Hqgw/qgw_p
x: 0 dx: 0
x: 0 dx: 0
(15.) DehavillandBeaverAnalysisModel/Environment Model/Dryden Wind Turbulence Model (Continuous (+q +r))/Filters on angular rates/Hrgw/rgw_p
x: 0 dx: 0
x: 0 dx: 0
(16.) DehavillandBeaverAnalysisModel/Environment Model/Dryden Wind Turbulence Model (Continuous (+q +r))/Filters on velocities/Hugw(s)/ug_p
x: 0 dx: 0
x: 0 dx: 0
(17.) DehavillandBeaverAnalysisModel/Environment Model/Dryden Wind Turbulence Model (Continuous (+q +r))/Filters on velocities/Hvgw(s)/vg_p1
x: 0 dx: 0
x: 0 dx: 0
(18.) DehavillandBeaverAnalysisModel/Environment Model/Dryden Wind Turbulence Model (Continuous (+q +r))/Filters on velocities/Hvgw(s)/vgw_p2
x: 0 dx: 0
x: 0 dx: 0
(19.) DehavillandBeaverAnalysisModel/Environment Model/Dryden Wind Turbulence Model (Continuous (+q +r))/Filters on velocities/Hwgw(s)/wg_p1
x: -8.13e-14 dx: 0
x: 5.37e-15 dx: 0
(20.) DehavillandBeaverAnalysisModel/Environment Model/Dryden Wind Turbulence Model (Continuous (+q +r))/Filters on velocities/Hwgw(s)/wg_p2
x: 0 dx: 0
x: 0 dx: 0
Inputs:
----------
(1.) DehavillandBeaverAnalysisModel/AileronCmd
u: 0.00234 [-0.524 0.524]
(2.) DehavillandBeaverAnalysisModel/ElevatorCmd
u: 0.0239 [-0.524 0.524]
(3.) DehavillandBeaverAnalysisModel/RudderCmd
u: -0.0377 [-1.05 1.05]
(4.) DehavillandBeaverAnalysisModel/ThrottleCmd
u: 0.493 [0 1]
Outputs:
----------
(1.) DehavillandBeaverAnalysisModel/StatesOut
y: -3.86e-13 [-Inf Inf]
y: -1.18e-12 [-Inf Inf]
y: -2.2e+03 [-Inf Inf]
y: 0.021 [-Inf Inf]
y: 0.0653 [-Inf Inf]
y: 0 [-Inf Inf]
y: 67.3 [-Inf Inf]
y: 0.0927 [-Inf Inf]
y: 4.4 [-Inf Inf]
y: -1e-20 [-Inf Inf]
y: 3.52e-23 [-Inf Inf]
y: -1.69e-20 [-Inf Inf]
latFlyingQual =
struct with fields:
DutchRollMode: [1×1 struct]
RollMode: [1×1 struct]
SpiralMode: [1×1 struct]Calculate the lateral-directional flying qualities of an
Aero.FixedWing object.
[aircraft, state] = astDehavillandBeaver();
linSys = linearize(aircraft, state)
latFlyingQual = computeLateralDirectionalFlyingQualities('', linSys)linSys =
A =
XN XE XD U V
XN 0 0 0 0.9896 0
XE 0 0 0 0 1
XD 0 0 0 -0.1439 0
U 0 0 0 -0.01339 -0.0004123
V 0 0 0 -0.004288 -0.02862
W 0 0 0 -0.1996 0.001044
P 0 0 0 -0.0006608 -0.08777
Q 0 0 0 0.03146 -0.002583
R 0 0 0 0.0008302 0.003697
Phi 0 0 0 0 0
Theta 0 0 0 0 0
Psi 0 0 0 0 0
W P Q R Phi
XN 0.1439 0 0 0 0
XE 0 0 0 0 6.475
XD 0.9896 0 0 0 3.238e-05
U 0.287 0 -0.2437 0 0.1845
V -0.006164 -0.2064 0 -44.39 9.621
W -1.262 0 43.92 0 -0.7921
P -0.001175 -5.218 -0.003787 1.771 -0.569
Q -0.1426 -1.697e-07 -2.947 -0.2721 -0.1121
R 0.0001093 -0.8464 0.1728 -0.5366 0.02393
Phi 0 1 0 0.1454 4.142e-22
Theta 0 0 1 0 -2.99e-19
Psi 0 0 0 1.011 2.878e-21
Theta Psi
XN -6.476 -0.0002227
XE 0 45
XD -44.53 3.238e-05
U -9.89 0.008391
V 0.03322 1.388
W 1.043 0.1316
P 0.00533 -0.08135
Q -0.0687 -0.023
R -0.005422 0.002902
Phi 3.053e-19 0
Theta 0 0
Psi 4.394e-20 0
B =
Aileron Flap Elevator Rudder Propeller
XN 0 0 0 0 0
XE 0 0 0 0 0
XD 0 0 0 0 0
U 0 0.6608 0 0.3456 5.018
V -0.3 0 0 1.94 0
W 0 -15.8 -4.068 0 0
P -7.019 0 0 0.491 0
Q 0 2.163 -10.21 0 0
R -0.1925 0 0 -2.509 0
Phi 0 0 0 0 0
Theta 0 0 0 0 0
Psi 0 0 0 0 0
C =
XN XE XD U V W P Q R
XN 1 0 0 0 0 0 0 0 0
XE 0 1 0 0 0 0 0 0 0
XD 0 0 1 0 0 0 0 0 0
U 0 0 0 1 0 0 0 0 0
V 0 0 0 0 1 0 0 0 0
W 0 0 0 0 0 1 0 0 0
P 0 0 0 0 0 0 1 0 0
Q 0 0 0 0 0 0 0 1 0
R 0 0 0 0 0 0 0 0 1
Phi 0 0 0 0 0 0 0 0 0
Theta 0 0 0 0 0 0 0 0 0
Psi 0 0 0 0 0 0 0 0 0
Phi Theta Psi
XN 0 0 0
XE 0 0 0
XD 0 0 0
U 0 0 0
V 0 0 0
W 0 0 0
P 0 0 0
Q 0 0 0
R 0 0 0
Phi 1 0 0
Theta 0 1 0
Psi 0 0 1
D =
Aileron Flap Elevator Rudder Propeller
XN 0 0 0 0 0
XE 0 0 0 0 0
XD 0 0 0 0 0
U 0 0 0 0 0
V 0 0 0 0 0
W 0 0 0 0 0
P 0 0 0 0 0
Q 0 0 0 0 0
R 0 0 0 0 0
Phi 0 0 0 0 0
Theta 0 0 0 0 0
Psi 0 0 0 0 0
Continuous-time state-space model.
latFlyingQual =
struct with fields:
DutchRollMode: [1×1 struct]
RollMode: [1×1 struct]
SpiralMode: [1×1 struct]Input Arguments
Model on which to perform flight control analysis using the linear state-space model
linSys. To use a state-space model directly, set the model name
to an empty string, ''.
Data Types: char | string
State-space model object used to perform flight control analysis on
modelToAnalyze. To create the state-space model from the input
dialog menu, set linSys to an empty string, ''.
To create a valid state-space model, see linearizeAirframe.
The state-space model must have these state names:
UWQtheta
Data Types: char | string
Set to on to display pole-zero map for the linear system
state-space model. Otherwise, set to off.
Data Types: char | string
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN, where Name is
the argument name and Value is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name in quotes.
Example: 'SourceDocument','MIL1797A'
Document for flying qualities requirements verification, specified as:
MIL8785C— Flying qualities of piloted airlinesMIL1797A— Flying qualities of piloted aircraft
Data Types: char | string
Flying qualities level, specified as:
Lowest— Returns the verified requirements closest to level 1 for each requirement in the selected source document.All— Returns astruct vectorwith all requirement levels and their verification status.1,2, or3— Returns the desired requirement level, regardless of the verification status.
Data Types: char | string
Output Arguments
Dutch roll, roll, and spiral lateral-directional flying qualities, returned as a structure vector.
If a linear system is selected through the input dialog,
varNameOut returns the results structure variable name.
Otherwise, varNameOut returns an empty string.
Limitations
This function requires the Simulink Control Design™ license.
Version History
Introduced in R2019a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Seleccione un país/idioma
Seleccione un país/idioma para obtener contenido traducido, si está disponible, y ver eventos y ofertas de productos y servicios locales. Según su ubicación geográfica, recomendamos que seleccione: .
También puede seleccionar uno de estos países/idiomas:
Cómo obtener el mejor rendimiento
Seleccione China (en idioma chino o inglés) para obtener el mejor rendimiento. Los sitios web de otros países no están optimizados para ser accedidos desde su ubicación geográfica.
América
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)