Create Reed-Solomon code from integer vector data
Communications Toolbox / Error Detection and Correction / Block
The Integer-Input RS Encoder block creates a Reed-Solomon code.
The symbols for the code are integers between 0 and
2M-1, which represent elements of the finite field
GF(2M). The default value of
M is the smallest integer that is greater than or equal to
log2(N+1), that is, ceil(log2(N+1))
. You can change the
default value of M by specifying the primitive polynomial for
GF(2M), as described in Specify the Primitive Polynomial below. Restrictions on
M and N are described in Restrictions on M and the Codeword Length N.
The input and output are integer-valued signals that represent messages and codewords, respectively. For more information, see Input and Output Signal Length in RS Blocks.
An (N, K) Reed-Solomon code can correct up to
floor((N-K)/2)
symbol errors (not bit errors) in each codeword.
Suppose M = 3, N = 23-1 = 7, and K = 5. Then a message is a
vector of length 5 whose entries are integers between 0 and 7. A corresponding codeword is a
vector of length 7 whose entries are integers between 0 and 7. The following figure illustrates
possible input and output signals to this block when Codeword length N is
set to 7
, Message length K is set to
5
, and the default primitive and generator polynomials are used.
Data Types |
|
Multidimensional Signals |
|
Variable-Size Signals |
|
This object implements the algorithm, inputs, and outputs described in Algorithms for BCH and RS Errors-only Decoding.