Main Content

RegressionOutputLayer

Regression output layer

Description

A regression layer computes the half-mean-squared-error loss for regression problems.

Creation

Create a regression output layer using regressionLayer.

Properties

expand all

Regression Output

Names of the responses, specified a cell array of character vectors or a string array. At training time, the software automatically sets the response names according to the training data. The default is {}.

Data Types: cell

Loss function the software uses for training, specified as 'mean-squared-error'.

Layer

Layer name, specified as a character vector or a string scalar. To include a layer in a layer graph, you must specify a nonempty unique layer name. If you train a series network with the layer and Name is set to '', then the software automatically assigns a name to the layer at training time.

Data Types: char | string

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

Input names of the layer. This layer accepts a single input only.

Data Types: cell

Number of outputs of the layer. The layer has no outputs.

Data Types: double

Output names of the layer. The layer has no outputs.

Data Types: cell

Examples

collapse all

Create a regression output layer with the name 'routput'.

layer = regressionLayer('Name','routput')
layer = 
  RegressionOutputLayer with properties:

             Name: 'routput'
    ResponseNames: {}

   Hyperparameters
     LossFunction: 'mean-squared-error'

The default loss function for regression is mean-squared-error.

Include a regression output layer in a Layer array.

layers = [ ...
    imageInputLayer([28 28 1])
    convolution2dLayer(12,25)
    reluLayer
    fullyConnectedLayer(1)
    regressionLayer]
layers = 
  5x1 Layer array with layers:

     1   ''   Image Input         28x28x1 images with 'zerocenter' normalization
     2   ''   Convolution         25 12x12 convolutions with stride [1  1] and padding [0  0  0  0]
     3   ''   ReLU                ReLU
     4   ''   Fully Connected     1 fully connected layer
     5   ''   Regression Output   mean-squared-error

More About

expand all

Introduced in R2017a