Main Content

LinearGaussian2F

Create LinearGaussian2F model object for Cap, Floor, Swaption, Swap, FixedBond, FloatBond, FloatBondOption, FixedBondOption, OptionEmbeddedFixedBond, or OptionEmbeddedFloatBond instrument

Since R2021b

Description

Create and price a Cap, Floor, Swaption, Swap, FloatBond, FloatBondOption, FixedBond, FixedBondOption, OptionEmbeddedFixedBond, or OptionEmbeddedFloatBond instrument object with a LinearGaussian2F model using this workflow:

  1. Use fininstrument to create a Cap, Floor, Swaption, Swap, FixedBond, FloatBond, FloatBondOption FixedBondOption, OptionEmbeddedFixedBond, or OptionEmbeddedFloatBond instrument object.

  2. Use finmodel to specify a LinearGaussian2F model object for the Cap, Floor, Swaption, Swap, FixedBond, FloatBond, FloatBondOption, FixedBondOption, OptionEmbeddedFixedBond, or OptionEmbeddedFloatBond instrument object.

  3. Use finpricer to specify an IRMonteCarlo pricing method for a Cap, Floor, Swaption, Swap, FixedBond, FloatBond, FloatBondOption, FixedBondOption, OptionEmbeddedFixedBond, or OptionEmbeddedFloatBond instrument object.

For more information on this workflow, see Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments.

For more information on the available pricing methods for a Cap, Floor, Swaption, Swap, FixedBond, FloatBond, FloatBondOption, FixedBondOption, OptionEmbeddedFixedBond, or OptionEmbeddedFloatBond instrument, see Choose Instruments, Models, and Pricers.

Creation

Description

LinearGaussian2FModelObj = finmodel(ModelType,Alpha1=alpha1_value,Sigma1=sigma1_value,Alpha2=alpha2_value,Sigma2=sigma2_value,Correlation=correlation_value) creates a LinearGaussian2F model object by specifying ModelType and the required name-value arguments for Alpha1, Sigma1, Alpha2, Sigma2 and Correlation to set properties using name-value pair arguments. For example, LinearGaussian2FModelObj = finmodel("LinearGaussian2F",Alpha1=0.07,Sigma1=0.01,Alpha2=0.5,Sigma2=0.006,Correlation=-0.7) creates a LinearGaussian2F model object.

example

Input Arguments

expand all

Model type, specified as a string with the value of "LinearGaussian2F" or a character vector with the value of 'LinearGaussian2F'.

Data Types: char | string

Name-Value Arguments

Specify required pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Example: LinearGaussian2FModelObj = finmodel("LinearGaussian2F",Alpha1=0.07,Sigma1=0.01,Alpha2=0.5,Sigma2=0.006,Correlation=-0.7)

Positive mean reversion value for first factor, specified as Alpha1 and a scalar numeric or timetable.

Data Types: double | timetable

Positive volatility for first factor, specified as Sigma1 and a scalar numeric or timetable.

Data Types: double | timetable

Positive mean reversion value for the second factor, specified as Alpha2 and a scalar numeric or timetable.

Data Types: double | timetable

Positive volatility for second factor, specified as Sigma2 and a scalar numeric or timetable.

Data Types: double | timetable

Scalar correlation of factors, specified as Correlation and a scalar numeric.

Data Types: double

Properties

expand all

Positive mean reversion for first factor, returned as a scalar numeric or timetable.

Data Types: double

Positive volatility for first factor, returned as a scalar numeric value or timetable.

Data Types: double

Positive mean reversion value for second factor, returned as a scalar numeric or timetable.

Data Types: double

Positive volatility for second factor, returned as a scalar numeric value or timetable.

Data Types: double | timetable

Scalar correlation of factors, returned as a scalar numeric value.

Data Types: double

Examples

collapse all

This example shows the workflow to price a Cap instrument when using a LinearGaussian2F model and an IRMonteCarlo pricing method.

Create Cap Instrument Object

Use fininstrument to create a Cap instrument object.

CapOpt = fininstrument("Cap",Maturity=datetime(2022,9,15),Strike=0.01,Reset=2,Name="cap_option")
CapOpt = 
  Cap with properties:

                      Strike: 0.0100
                    Maturity: 15-Sep-2022
                 ResetOffset: 0
                       Reset: 2
                       Basis: 0
                   Principal: 100
             ProjectionCurve: [0x0 ratecurve]
    DaycountAdjustedCashFlow: 0
       BusinessDayConvention: "actual"
                    Holidays: NaT
                        Name: "cap_option"

Create LinearGaussian2F Model Object

Use finmodel to create a LinearGaussian2F model object.

LinearGaussian2FModel = finmodel("LinearGaussian2F",Alpha1=0.07,Sigma1=0.01,Alpha2=0.5,Sigma2=0.006,Correlation=-0.7)
LinearGaussian2FModel = 
  LinearGaussian2F with properties:

         Alpha1: 0.0700
         Sigma1: 0.0100
         Alpha2: 0.5000
         Sigma2: 0.0060
    Correlation: -0.7000

Create ratecurve Object

Create a ratecurve object using ratecurve.

Settle = datetime(2019,1,1);
Type = 'zero';
ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = Settle + ZeroTimes;
 
myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)
myRC = 
  ratecurve with properties:

                 Type: "zero"
          Compounding: -1
                Basis: 0
                Dates: [10x1 datetime]
                Rates: [10x1 double]
               Settle: 01-Jan-2019
         InterpMethod: "linear"
    ShortExtrapMethod: "next"
     LongExtrapMethod: "previous"

Create IRMonteCarlo Pricer Object

Use finpricer to create an IRMonteCarlo pricer object and use the ratecurve object for the 'DiscountCurve' name-value pair argument.

outPricer = finpricer("IRMonteCarlo",Model=LinearGaussian2FModel,DiscountCurve=myRC,SimulationDates=ZeroDates)
outPricer = 
  G2PPMonteCarlo with properties:

          NumTrials: 1000
      RandomNumbers: []
      DiscountCurve: [1x1 ratecurve]
    SimulationDates: [01-Jul-2019    01-Jan-2020    01-Jan-2021    01-Jan-2022    01-Jan-2023    01-Jan-2024    01-Jan-2026    01-Jan-2029    01-Jan-2039    01-Jan-2049]
              Model: [1x1 finmodel.LinearGaussian2F]

Price Cap Instrument

Use price to compute the price and sensitivities for the Cap instrument.

[Price,outPR] = price(outPricer,CapOpt,["all"])
Price = 
1.2156
outPR = 
  priceresult with properties:

       Results: [1x4 table]
    PricerData: [1x1 struct]

outPR.Results
ans=1×4 table
    Price     Delta     Gamma          Vega      
    ______    ______    _____    ________________

    1.2156    131.37    11048    126.5    -157.38

More About

expand all

Version History

Introduced in R2021b