OptionEmbeddedFloatBond
OptionEmbeddedFloatBond instrument object
Description
Create and price a OptionEmbeddedFloatBond instrument
object for one or more Option Embedded Float Bond instruments using this
workflow:
Use
fininstrumentto create anOptionEmbeddedFloatBondinstrument object for one or more Option Embedded Float Bond instruments.Use
finmodelto specify aHullWhite,BlackKarasinski,BlackDermanToy,BraceGatarekMusiela,SABRBraceGatarekMusiela,CoxIngersollRoss, orLinearGaussian2Fmodel for theOptionEmbeddedFloatBondinstrument object.Choose a pricing method.
When using a
HullWhite,BlackKarasinski,CoxIngersollRoss, orBlackDermanToymodel, usefinpricerto specify anIRTreepricing method for one or moreOptionEmbeddedFloatBondinstruments.When using a
HullWhite,BlackKarasinski,BraceGatarekMusiela,SABRBraceGatarekMusiela, orLinearGaussian2Fmodel, usefinpricerto specify anIRMonteCarlopricing method for one or moreOptionEmbeddedFloatBondinstruments.
For more information on this workflow, see Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments.
For more information on the available models and pricing methods for an
OptionEmbeddedFloatBond instrument, see Choose Instruments, Models, and Pricers.
Creation
Syntax
Description
creates a OptionEmbeddedFloatBondObj = fininstrument(InstrumentType,'Spread',spread_value,'Maturity',maturity_date,'CallSchedule',call_schedule_value)OptionEmbeddedFloatBond object for one or more
Option Embedded Float Bond instruments by specifying
InstrumentType and the required name-value pair
arguments Spread, Maturity, and
CallSchedule sets the properties
using required name-value pair arguments.
OptionEmbeddedFloatBond supports vanilla bonds with
embedded options and amortizing bonds with embedded options.
creates a OptionEmbeddedFloatBondObj = fininstrument(InstrumentType,'Spread',spread_value,'Maturity',maturity_date,'PutSchedule',put_schedule_value)OptionEmbeddedFloatBond object for one or more
Option Embedded Float Bond instruments by specifying
InstrumentType and the required name-value pair
arguments Spread, Maturity, and
PutSchedule sets the properties
using required name-value pair arguments.
sets optional properties
using additional name-value pairs in addition to the required arguments in
the previous syntax. For example, OptionEmbeddedFloatBondObj = fininstrument(___,Name,Value)OptionEmbeddedFloatBondObj =
fininstrument("OptionEmbeddedFloatBond",'Spread',0.01,'Maturity',datetime(2019,1,30),'Period',4,'Basis',5,'Principal',1000,'FirstCouponDate',datetime(2016,1,30),'EndMonthRule',1,'CallSchedule',schedule,'CallExerciseStyle',"american",'ProjectionCurve',ratecurve_obj,'Name',"optionembeddedfloatbond").
You can specify multiple name-value pairs.
Input Arguments
Instrument type, specified as a string with the value of
"OptionEmbeddedFloatBond", a character vector
with the value of 'OptionEmbeddedFloatBond', an
NINST-by-1 string array with
values of "OptionEmbeddedFloatBond", or an
NINST-by-1 cell array of
character vectors with values of
'OptionEmbeddedFloatBond'.
Data Types: char | cell | string
Name-Value Arguments
Specify required
and optional pairs of arguments as
Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is
the corresponding value. Name-value arguments must appear after other arguments,
but the order of the pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name in quotes.
Example: OptionEmbeddedFloatBondObj =
fininstrument("OptionEmbeddedFloatBond",'Spread',0.01,'Maturity',datetime(2019,1,30),'Period',4,'Basis',5,'Principal',1000,'FirstCouponDate',datetime(2016,1,30),'EndMonthRule',1,'CallSchedule',schedule,'CallExerciseStyle',"american",'ProjectionCurve',ratecurve_obj,'Name',"optionembeddedfloatbond")
Required OptionEmbeddedFloatBond Name-Value Pair Arguments
Number of basis points over the reference rate, specified as the
comma-separated pair consisting of 'Spread' and a
scalar nonnegative numeric or an
NINST-by-1 vector of
nonnegative numeric.
Data Types: double
Maturity date, specified as the comma-separated pair consisting of
'Maturity' and a scalar or an
NINST-by-1 vector using a
datetime array, string array, or date character vectors.
To support existing code, OptionEmbeddedFloatBond also
accepts serial date numbers as inputs, but they are not recommended.
Call schedule, specified as the comma-separated pair consisting of
'CallSchedule' and a timetable of call dates
and strikes.
If you use a date character vector or date string for the dates in
this timetable, the format must be recognizable by datetime because
the CallSchedule property is stored as a datetime.
Note
The OptionEmbeddedFloatBond instrument
supports either CallSchedule and
CallExerciseStyle or
PutSchedule and
PutExerciseStyle, but not both.
If you are creating one or more
OptionEmbeddedFloatBond instruments
and use a timetable, the timetable specification applies to
all of the OptionEmbeddedFloatBond
instruments. CallSchedule does not accept
an NINST-by-1 cell
array of timetables as input.
Data Types: timetable
Put schedule, specified as the comma-separated pair consisting of
'PutSchedule' and a timetable of call dates
and strikes.
If you use a date character vector or date string for dates in
this timetable, the format must be recognizable by datetime because
the PutSchedule property is stored as a datetime.
Note
The OptionEmbeddedFloatBond instrument
supports either CallSchedule and
CallExerciseStyle or
PutSchedule and
PutExerciseStyle, but not both.
If you are creating one or more
OptionEmbeddedFloatBond instruments
and use a timetable, the timetable specification applies to
all of the OptionEmbeddedFloatBond
instruments. PutSchedule does not accept
an NINST-by-1 cell
array of timetables as input.
Data Types: timetable
Optional OptionEmbeddedFloatBond Name-Value Pair Arguments
Frequency of payments per year, specified as the comma-separated
pair consisting of 'Reset' and a scalar integer
or an NINST-by-1 vector of
integers. Values for Reset are:
1, 2,
3, 4, 6,
and 12.
Data Types: double
Call option exercise style, specified as the comma-separated pair
consisting of 'CallExerciseStyle' and a scalar
string or character vector or an
NINST-by-1 cell array of
character vectors or string array.
Note
The CallSchedule is a timetable of
call dates and strikes. If you do not specify a
CallExerciseStyle, then based on the
CallSchedule specification, a
default value of CallExerciseStyle is
assigned as follows:
If there is one exercise date in the
CallSchedule, then theCallExerciseStyleis an"European".If there are two exercise dates in the
CallSchedule, then theCallExerciseStyleis an"American"with a start date and maturity.If there are more than two exercise dates in the
CallSchedule, then theCallExerciseStyleis an"Bermudan".
If the you define a CallExerciseStyle
and this is not consistent with what you have specified in
the CallSchedule, you receive an error
message.
Data Types: string | cell | char
Put option exercise style, specified as the comma-separated pair
consisting of 'PutExerciseStyle' and a scalar
string or character vector or an
NINST-by-1 cell array of
character vectors or string array.
Note
The PutSchedule is a timetable of
call dates and strikes. If you do not specify a
PutExerciseStyle, then based on the
PutSchedule specification, a
default value of PutExerciseStyle is
assigned as follows:
If there is one exercise date in the
PutSchedule, then thePutExerciseStyleis an"European".If there are two exercise dates in the
PutSchedule, then thePutExerciseStyleis an"American"with a start date and maturity.If there are more than two exercise dates in the
PutSchedule, then thePutExerciseStyleis an"Bermudan".
If the you define a PutExerciseStyle
and this is not consistent with what you have specified in
the PutSchedule, you receive an error
message.
Data Types: string | cell | char
Day count basis, specified as the comma-separated pair consisting
of 'Basis' and scalar integer or an
NINST-by-1 vector of
integers using the following values:
0 — actual/actual
1 — 30/360 (SIA)
2 — actual/360
3 — actual/365
4 — 30/360 (PSA)
5 — 30/360 (ISDA)
6 — 30/360 (European)
7 — actual/365 (Japanese)
8 — actual/actual (ICMA)
9 — actual/360 (ICMA)
10 — actual/365 (ICMA)
11 — 30/360E (ICMA)
12 — actual/365 (ISDA)
13 — BUS/252
For more information, see Basis.
Data Types: double
Notional principal amount or principal value schedule, specified
as the comma-separated pair consisting of
'Principal' and a scalar numeric or an
NINST-by-1 numeric vector
or a timetable.
Principal accepts a timetable, where the
first column is dates and the second column is the associated
notional principal value. The date indicates the last day that the
principal value is valid.
Note
If you are creating one or more
OptionEmbeddedFloatBond instruments and
use a timetable, the timetable specification applies to all of
the OptionEmbeddedFloatBond instruments.
Principal does not accept an
NINST-by-1 cell array
of timetables as input.
Data Types: double | timetable
Flag indicating whether cash flow adjusts for day count
convention, specified as the comma-separated pair consisting of
'DaycountAdjustedCashFlow' and a scalar
logical or an NINST-by-1
vector of logicals with values of true or
false.
Data Types: logical
Business day conventions, specified as the comma-separated pair
consisting of 'BusinessDayConvention' and a
scalar string or character vector or an
NINST-by-1 cell array of
character vectors or string array. The selection for business day
convention determines how nonbusiness days are treated. Nonbusiness
days are defined as weekends plus any other date that businesses are
not open (for example, statutory holidays). Values are:
"actual"— Nonbusiness days are effectively ignored. Cash flows that fall on non-business days are assumed to be distributed on the actual date."follow"— Cash flows that fall on a nonbusiness day are assumed to be distributed on the following business day."modifiedfollow"— Cash flows that fall on a nonbusiness day are assumed to be distributed on the following business day. However if the following business day is in a different month, the previous business day is adopted instead."previous"— Cash flows that fall on a nonbusiness day are assumed to be distributed on the previous business day."modifiedprevious"— Cash flows that fall on a nonbusiness day are assumed to be distributed on the previous business day. However if the previous business day is in a different month, the following business day is adopted instead.
Data Types: char | cell | string
Holidays used in computing business days, specified as the
comma-separated pair consisting of 'Holidays' and
dates using an NINST-by-1
vector of a datetime array, string array, or date character vectors.
For
example:
H = holidays(datetime('today'),datetime(2025,12,15)); OptionEmbeddedFixedBondObj = fininstrument("OptionEmbeddedFixedBond",'CouponRate',0.34,'Maturity',datetime(2025,12,15),... 'CallSchedule',schedule,'CallExerciseStyle',"american",'Holidays',H)
To support existing code, OptionEmbeddedFloatBond also
accepts serial date numbers as inputs, but they are not recommended.
End-of-month rule flag for generating dates when
Maturity is an end-of-month date for a month
with 30 or fewer days, specified as the comma-separated pair
consisting of 'EndMonthRule' and a scalar logical
or an NINST-by-1 vector of
logicals values of true or
false.
If you set
EndMonthRuletofalse, the software ignores the rule, meaning that a payment date is always the same numerical day of the month.If you set
EndMonthRuletotrue, the software sets the rule on, meaning that a payment date is always the last actual day of the month.
Data Types: logical
Bond issue date, specified as the comma-separated pair consisting
of 'IssueDate' and a scalar or an
NINST-by-1 vector using a
datetime array, string array, or date character vectors.
To support existing code, OptionEmbeddedFloatBond also
accepts serial date numbers as inputs, but they are not recommended.
If you use date character vectors or strings, the format must be
recognizable by datetime because
the IssueDate property is stored as a
datetime.
Irregular first coupon date, specified as the comma-separated pair
consisting of 'FirstCouponDate' and a scalar or
an NINST-by-1 vector using a
datetime array, string array, or date character vectors.
To support existing code, OptionEmbeddedFloatBond also
accepts serial date numbers as inputs, but they are not recommended.
When FirstCouponDate and
LastCouponDate are both specified,
FirstCouponDate takes precedence in
determining the coupon payment structure. If you do not specify
FirstCouponDate, the cash flow payment dates
are determined from other inputs.
If you use date character vectors or strings, the format must be
recognizable by datetime because
the FirstCouponDate property is stored as a
datetime.
Irregular last coupon date, specified as the comma-separated pair
consisting of 'LastCouponDate' and a scalar or an
NINST-by-1 vector using a
datetime array, string array, or date character vectors.
To support existing code, OptionEmbeddedFloatBond also
accepts serial date numbers as inputs, but they are not recommended.
If you specify LastCouponDate but not
FirstCouponDate,
LastCouponDate determines the coupon
structure of the bond. The coupon structure of a bond is truncated
at LastCouponDate, regardless of where it falls,
and is followed only by the bond's maturity cash flow date. If you
do not specify LastCouponDate, the cash flow
payment dates are determined from other inputs.
If you use date character vectors or strings, the format must be
recognizable by datetime because
the LastCouponDate property is stored as a
datetime.
Forward starting date of payments, specified as the
comma-separated pair consisting of 'StartDate'
and a scalar or an NINST-by-1
vector using a datetime array, string array, or date character
vectors.
To support existing code, OptionEmbeddedFloatBond also
accepts serial date numbers as inputs, but they are not recommended.
If you use date character vectors or strings, the format must be
recognizable by datetime because
the StartDate property is stored as a
datetime.
User-defined name for the instrument, specified as the
comma-separated pair consisting of 'Name' and a
scalar string or character vector or an
NINST-by-1 cell array of
character vectors or string array.
Data Types: char | cell | string
Output Arguments
Option Embedded Float Bond instrument, returned as an
OptionEmbeddedFloatBond object.
Properties
Number of basis points over the reference rate, returned as a scalar
nonnegative numeric or an NINST-by-1
vector of nonnegative numeric values.
Data Types: double
Maturity date, returned as a scalar datetime or an
NINST-by-1 vector of
datetimes.
Data Types: datetime
Call schedule, returned as a timetable.
Data Types: cell | datetime
Put schedule, returned as a timetable.
Data Types: cell | datetime
Frequency of payments per year, returned as a scalar integer or an
NINST-by-1 vector of
integers.
Data Types: double
Day count basis, returned as a scalar integer or an
NINST-by-1 vector of integers.
Data Types: double
Notional principal amount or principal value schedule, returned as a
scalar numeric or an NINST-by-1
numeric vector or a timetable.
Data Types: timetable | double
Flag indicating whether cash flow adjusted for day count convention,
returned as scalar logical or an
NINST-by-1 vector of logicals with
values of true or false.
Data Types: logical
Business day conventions, returned as a string or an
NINST-by-1 string array.
Data Types: string
Holidays used in computing business days, returned as an
NINST-by-1 vector of
datetimes.
Data Types: datetime
End-of-month rule flag for generating dates when
Maturity is an end-of-month date for a month with 30
or fewer days, returned as a scalar logical or an
NINST-by-1 vector of
logicals.
Data Types: logical
Bond issue date, returned as a scalar datetime or an
NINST-by-1 vector of
datetimes.
Data Types: datetime
Irregular first coupon date, returned as a scalar datetime or an
NINST-by-1 vector of datetimes.
Data Types: datetime
Irregular last coupon date, returned as a scalar datetime or an
NINST-by-1 vector of
datetimes.
Data Types: datetime
Forward starting date of payments, returned as a scalar datetime or an
NINST-by-1 vector of datetimes.
Data Types: datetime
This property is read-only.
Call option exercise style, returned as a string or an
NINST-by-1 string array with
values of "European", "American", or
"Bermudan".
Data Types: string
This property is read-only.
Put option exercise style, returned as a string or an
NINST-by-1 string array with
values of "European", "American", or
"Bermudan".
Data Types: string
User-defined name for the instrument, returned as a string or an
NINST-by-1 string array.
Data Types: string
Object Functions
setCallExercisePolicy | Set call exercise policy for OptionEmbeddedFixedBond,
OptionEmbeddedFloatBond, or ConvertibleBond
instrument |
setPutExercisePolicy | Set put exercise policy for OptionEmbeddedFixedBond,
OptionEmbeddedFloatBond, or ConvertibleBond
instrument |
Examples
This example shows the workflow to price American, European, and Bermudan exercise styles for three callable OptionEmbeddedFloatBond instruments when you use a HullWhite model and an IRTree pricing method.
Create ratecurve Object
Create a ratecurve object using ratecurve.
Settle = datetime(2018,1,1); ZeroTimes = calyears(1:10)'; ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]'; ZeroDates = Settle + ZeroTimes; Compounding = 1; ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates, "Compounding",Compounding);
Create OptionEmbeddedFloatBond Instrument Objects
Use fininstrument to create three OptionEmbeddedFloatBond instrument objects with different exercise styles.
Maturity = datetime(2024,1,1); % Option embedded float bond (Bermudan callable bond) Strike = [100; 100]; ExerciseDates = [datetime(2020,1,1); datetime(2024,1,1)]; Reset = 1; CallSchedule = timetable(ExerciseDates,Strike,'VariableNames',{'Strike Schedule'}); CallableBondBermudan = fininstrument("OptionEmbeddedFloatBond",'Maturity',Maturity,... 'Spread',0.025,'Reset',Reset, ... 'CallSchedule',CallSchedule,'CallExerciseStyle', "bermudan")
CallableBondBermudan =
OptionEmbeddedFloatBond with properties:
Spread: 0.0250
ProjectionCurve: [0×0 ratecurve]
ResetOffset: 0
Reset: 1
Basis: 0
EndMonthRule: 1
Principal: 100
DaycountAdjustedCashFlow: 0
BusinessDayConvention: "actual"
Holidays: NaT
IssueDate: NaT
FirstCouponDate: NaT
LastCouponDate: NaT
StartDate: NaT
Maturity: 01-Jan-2024
CallDates: [2×1 datetime]
PutDates: [0×1 datetime]
CallSchedule: [2×1 timetable]
PutSchedule: [0×0 timetable]
CallExerciseStyle: "bermudan"
PutExerciseStyle: [0×0 string]
Name: ""
% Option embedded float bond (American callable bond) Strike = 100; ExerciseDates = datetime(2024,1,1); CallSchedule = timetable(ExerciseDates,Strike,'VariableNames',{'Strike Schedule'}); Reset = 1; CallableBondAmerican = fininstrument("OptionEmbeddedFloatBond",'Maturity',Maturity,... 'Spread',0.025,'Reset', Reset, ... 'CallSchedule',CallSchedule,'CallExerciseStyle',"american")
CallableBondAmerican =
OptionEmbeddedFloatBond with properties:
Spread: 0.0250
ProjectionCurve: [0×0 ratecurve]
ResetOffset: 0
Reset: 1
Basis: 0
EndMonthRule: 1
Principal: 100
DaycountAdjustedCashFlow: 0
BusinessDayConvention: "actual"
Holidays: NaT
IssueDate: NaT
FirstCouponDate: NaT
LastCouponDate: NaT
StartDate: NaT
Maturity: 01-Jan-2024
CallDates: 01-Jan-2024
PutDates: [0×1 datetime]
CallSchedule: [1×1 timetable]
PutSchedule: [0×0 timetable]
CallExerciseStyle: "american"
PutExerciseStyle: [0×0 string]
Name: ""
% Option embedded float bond (European callable bond) Strike = 100; ExerciseDates = datetime(2024,1,1); CallSchedule = timetable(ExerciseDates,Strike,'VariableNames',{'Strike Schedule'}); Reset = 1; CallableBondEuropean = fininstrument("OptionEmbeddedFloatBond",'Maturity',Maturity,... 'Spread',0.025,'Reset',Reset, ... 'CallSchedule',CallSchedule)
CallableBondEuropean =
OptionEmbeddedFloatBond with properties:
Spread: 0.0250
ProjectionCurve: [0×0 ratecurve]
ResetOffset: 0
Reset: 1
Basis: 0
EndMonthRule: 1
Principal: 100
DaycountAdjustedCashFlow: 0
BusinessDayConvention: "actual"
Holidays: NaT
IssueDate: NaT
FirstCouponDate: NaT
LastCouponDate: NaT
StartDate: NaT
Maturity: 01-Jan-2024
CallDates: 01-Jan-2024
PutDates: [0×1 datetime]
CallSchedule: [1×1 timetable]
PutSchedule: [0×0 timetable]
CallExerciseStyle: "european"
PutExerciseStyle: [0×0 string]
Name: ""
Create HullWhite Model Object
Use finmodel to create a HullWhite model object.
VolCurve = 0.01; AlphaCurve = 0.1; HWModel = finmodel("HullWhite",'alpha',AlphaCurve,'sigma',VolCurve);
Create IRTree Pricer Object
Use finpricer to create an IRTree pricer object and use the ratecurve object for the 'DiscountCurve' name-value pair argument.
HWTreePricer = finpricer("IRTree",'Model',HWModel,'DiscountCurve',ZeroCurve,'TreeDates',ZeroDates)
HWTreePricer =
HWBKTree with properties:
Tree: [1×1 struct]
TreeDates: [10×1 datetime]
Model: [1×1 finmodel.HullWhite]
DiscountCurve: [1×1 ratecurve]
Price OptionEmbeddedFixedBond Instruments
Use price to compute the price and sensitivities for the three OptionEmbeddedFixedBond instruments.
[Price, outPR] = price(HWTreePricer,CallableBondBermudan,["all"])Price = 104.9598
outPR =
priceresult with properties:
Results: [1×4 table]
PricerData: [1×1 struct]
outPR.Results
ans=1×4 table
Price Delta Gamma Vega
______ _______ ______ ____
104.96 -7.3926 19.597 0
[Price, outPR] = price(HWTreePricer,CallableBondAmerican,["all"])Price = 100
outPR =
priceresult with properties:
Results: [1×4 table]
PricerData: [1×1 struct]
outPR.Results
ans=1×4 table
Price Delta Gamma Vega
_____ _____ _____ ____
100 0 0 0
[Price, outPR] = price(HWTreePricer,CallableBondEuropean,["all"])Price = 114.5571
outPR =
priceresult with properties:
Results: [1×4 table]
PricerData: [1×1 struct]
outPR.Results
ans=1×4 table
Price Delta Gamma Vega
______ _______ ______ ___________
114.56 -50.006 262.58 -2.8422e-10
This example shows the workflow to price an OptionEmbeddedFloatBond instrument when using a HullWhite model and an IRMonteCarlo pricing method.
Create ratecurve Object
Create a ratecurve object using ratecurve.
Settle = datetime(2019,1,1); Type = 'zero'; ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]'; ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]'; ZeroDates = Settle + ZeroTimes; myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)
myRC =
ratecurve with properties:
Type: "zero"
Compounding: -1
Basis: 0
Dates: [10×1 datetime]
Rates: [10×1 double]
Settle: 01-Jan-2019
InterpMethod: "linear"
ShortExtrapMethod: "next"
LongExtrapMethod: "previous"
Create OptionEmbeddedFloatBond Instrument Object
Use fininstrument to create an OptionEmbeddedFloatBond instrument object.
% Option embedded float bond (European callable bond) Maturity = datetime(2022,9,15); Strike = 100; ExerciseDates = datetime(2024,1,1); CallSchedule = timetable(datetime(2020,3,15), 50); Reset = 1; CallableBondEuropean = fininstrument("OptionEmbeddedFloatBond",'Maturity',Maturity,... 'Spread',0.025,'Reset',Reset, ... 'CallSchedule',CallSchedule)
CallableBondEuropean =
OptionEmbeddedFloatBond with properties:
Spread: 0.0250
ProjectionCurve: [0×0 ratecurve]
ResetOffset: 0
Reset: 1
Basis: 0
EndMonthRule: 1
Principal: 100
DaycountAdjustedCashFlow: 0
BusinessDayConvention: "actual"
Holidays: NaT
IssueDate: NaT
FirstCouponDate: NaT
LastCouponDate: NaT
StartDate: NaT
Maturity: 15-Sep-2022
CallDates: 15-Mar-2020
PutDates: [0×1 datetime]
CallSchedule: [1×1 timetable]
PutSchedule: [0×0 timetable]
CallExerciseStyle: "european"
PutExerciseStyle: [0×0 string]
Name: ""
Create HullWhite Model Object
Use finmodel to create a HullWhite model object.
HullWhiteModel = finmodel("HullWhite",'Alpha',0.32,'Sigma',0.49)
HullWhiteModel =
HullWhite with properties:
Alpha: 0.3200
Sigma: 0.4900
Create IRMonteCarlo Pricer Object
Use finpricer to create an IRMonteCarlo pricer object and use the ratecurve object for the 'DiscountCurve' name-value pair argument.
outPricer = finpricer("IRMonteCarlo",'Model',HullWhiteModel,'DiscountCurve',myRC,'SimulationDates',datetime(2019,3,15)+calmonths(0:6:48)')
outPricer =
HWMonteCarlo with properties:
NumTrials: 1000
RandomNumbers: []
DiscountCurve: [1×1 ratecurve]
SimulationDates: [15-Mar-2019 15-Sep-2019 15-Mar-2020 15-Sep-2020 15-Mar-2021 15-Sep-2021 15-Mar-2022 15-Sep-2022 15-Mar-2023]
Model: [1×1 finmodel.HullWhite]
Price OptionEmbeddedFloatBond Instrument
Use price to compute the price and sensitivities for the OptionEmbeddedFloatBond instrument.
[Price,outPR] = price(outPricer,CallableBondEuropean,["all"])Price = 51.3788
outPR =
priceresult with properties:
Results: [1×4 table]
PricerData: [1×1 struct]
outPR.Results
ans=1×4 table
Price Delta Gamma Vega
______ ______ _______ _______
51.379 61.634 -81.051 -7.0508
This example shows the workflow to price a OptionEmbeddedFloatBond instrument when you use a CoxIngersollRoss model and an IRTree pricing method.
Create OptionEmbeddedFloatBond Instrument Object
Use fininstrument to create a OptionEmbeddedFloatBond instrument object.
Maturity = datetime(2027,1,1);
Spread = 0.0020;
Reset = 1;
Strike = 95;
ExerciseDates = datetime(2026,1,1);
CallSchedule = timetable(ExerciseDates,Strike,VariableNames={'Strike Schedule'});
CallableFloat = fininstrument("OptionEmbeddedFloatBond",Maturity=Maturity,Spread=Spread,Reset=Reset,CallSchedule=CallSchedule,Name="OptionEmbeddedFloatBond_inst")CallableFloat =
OptionEmbeddedFloatBond with properties:
Spread: 0.0020
ProjectionCurve: [0×0 ratecurve]
ResetOffset: 0
Reset: 1
Basis: 0
EndMonthRule: 1
Principal: 100
DaycountAdjustedCashFlow: 0
BusinessDayConvention: "actual"
Holidays: NaT
IssueDate: NaT
FirstCouponDate: NaT
LastCouponDate: NaT
StartDate: NaT
Maturity: 01-Jan-2027
CallDates: 01-Jan-2026
PutDates: [0×1 datetime]
CallSchedule: [1×1 timetable]
PutSchedule: [0×0 timetable]
CallExerciseStyle: "european"
PutExerciseStyle: [0×0 string]
Name: "OptionEmbeddedFloatBond_inst"
Create CoxIngersollRoss Model Object
Use finmodel to create a CoxIngersollRoss model object.
alpha = 0.03;
theta = 0.02;
sigma = 0.1;
CIRModel = finmodel("CoxIngersollRoss",Sigma=sigma,Alpha=alpha,Theta=theta)CIRModel =
CoxIngersollRoss with properties:
Sigma: 0.1000
Alpha: 0.0300
Theta: 0.0200
Create ratecurve Object
Create a ratecurve object using ratecurve.
Times= [calyears([1 2 3 4 ])]';
Settle = datetime(2023,1,1);
ZRates = [0.035; 0.042147; 0.047345; 0.052707]';
ZDates = Settle + Times;
Compounding = -1;
Basis = 1;
ZeroCurve = ratecurve("zero",Settle,ZDates,ZRates,Compounding = Compounding, Basis = Basis);Create IRTree Pricer Object
Use finpricer to create an IRTree pricer object for the CoxIngersollRoss model and use the ratecurve object for the 'DiscountCurve' name-value argument.
CIRPricer = finpricer("irtree",Model=CIRModel,DiscountCurve=ZeroCurve,Maturity=ZDates(end),NumPeriods=length(ZDates))CIRPricer =
CIRTree with properties:
Tree: [1×1 struct]
TreeDates: [4×1 datetime]
Model: [1×1 finmodel.CoxIngersollRoss]
DiscountCurve: [1×1 ratecurve]
Price OptionEmbeddedFloatBond Instrument
Use price to compute the price for the OptionEmbeddedFloatBond instrument.
[Price,outPR] = price(CIRPricer,CallableFloat,"all")Price = 96.2125
outPR =
priceresult with properties:
Results: [1×4 table]
PricerData: [1×1 struct]
outPR.Results
ans=1×4 table
Price Delta Gamma Vega
______ ______ _______ __________
96.213 11.933 -36.551 2.8422e-10
This example shows the workflow to price multiple OptionEmbeddedFloatBond instruments with Bermudan exercise styles when you use a HullWhite model and an IRTree pricing method.
Create ratecurve Object
Create a ratecurve object using ratecurve.
Settle = datetime(2018,1,1); ZeroTimes = calyears(1:10)'; ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]'; ZeroDates = Settle + ZeroTimes; Compounding = 1; ZeroCurve = ratecurve("zero",Settle,ZeroDates,ZeroRates, "Compounding",Compounding);
Create OptionEmbeddedFloatBond Instrument Objects
Use fininstrument to create an OptionEmbeddedFloatBond instrument object for three Option Embedded Float Bond instruments with a Bermudan exercise style.
Maturity = datetime([2025,1,1 ; 2026,1,1 ; 2027,1,1]); % Option embedded float bond (Bermudan callable bond) Strike = [101 ; 102 ; 103]; ExerciseDates = datetime([2022,1,1 ; 2023,1,1 ; 2024,1,1]); CallSchedule = timetable(ExerciseDates,Strike,'VariableNames',{'Strike Schedule'}); Reset = 1; CallableBondBermudan = fininstrument("OptionEmbeddedFloatBond",'Maturity',Maturity,... 'Spread',[0.001; 0.0015; 0.002],'Reset', Reset, ... 'CallSchedule',CallSchedule,'CallExerciseStyle',"bermudan")
CallableBondBermudan=3×1 OptionEmbeddedFloatBond array with properties:
Spread
ProjectionCurve
ResetOffset
Reset
Basis
EndMonthRule
Principal
DaycountAdjustedCashFlow
BusinessDayConvention
Holidays
IssueDate
FirstCouponDate
LastCouponDate
StartDate
Maturity
CallDates
PutDates
CallSchedule
PutSchedule
CallExerciseStyle
PutExerciseStyle
Name
When you create multiple OptionEmbeddedFloatBond instruments and use a timetable for CallSchedule, the timetable specification applies to all of the OptionEmbeddedFloatBond instruments. The CallSchedule input argument does not accept an NINST-by-1 cell array of timetables as input.
Create HullWhite Model Object
Use finmodel to create a HullWhite model object.
VolCurve = 0.01; AlphaCurve = 0.1; HWModel = finmodel("HullWhite",'alpha',AlphaCurve,'sigma',VolCurve);
Create IRTree Pricer Object
Use finpricer to create an IRTree pricer object and use the ratecurve object for the 'DiscountCurve' name-value pair argument.
HWTreePricer = finpricer("IRTree",'Model',HWModel,'DiscountCurve',ZeroCurve,'TreeDates',ZeroDates)
HWTreePricer =
HWBKTree with properties:
Tree: [1×1 struct]
TreeDates: [10×1 datetime]
Model: [1×1 finmodel.HullWhite]
DiscountCurve: [1×1 ratecurve]
Price OptionEmbeddedFixedBond Instruments
Use price to compute the prices and sensitivities for the three OptionEmbeddedFixedBond instruments.
[Price, outPR] = price(HWTreePricer,CallableBondBermudan,"all")Price = 3×1
100.6713
101.1327
101.6643
outPR=3×1 priceresult array with properties:
Results
PricerData
outPR.Results
ans=1×4 table
Price Delta Gamma Vega
______ _______ _____ ___________
100.67 -2.6133 15.33 -4.2633e-10
ans=1×4 table
Price Delta Gamma Vega
______ _______ ______ ___________
101.13 -4.9053 31.676 -5.6843e-10
ans=1×4 table
Price Delta Gamma Vega
______ _______ ______ _________
101.66 -7.8748 55.171 -0.066246
More About
A floating-rate note with an embedded option enables floating-rate notes to have early redemption features.
A floating-rate note with an embedded option gives investors or issuers the option to retire the outstanding principal prior to maturity. An embedded call option gives the right to retire the note prior to the maturity date (callable floater), and an embedded put option gives the right to sell the note back at a specific price (puttable floater).
Callable Floating Note — A callable floating note gives the issuer the right to redeem the note before its maturity date. If interest rates decline or market conditions become favorable for the issuer, they can choose to call or redeem the note, effectively ending the investor's right to receive future interest payments. The call option allows the issuer to refinance the debt at a lower interest rate, reducing their borrowing costs.
Puttable Floating Note — A puttable floating note provides the investor with the right to sell the note back to the issuer before its maturity date. This option allows the investor to demand early repayment of the principal if certain conditions are met, such as if interest rates rise significantly. The put option provides the investor with some flexibility and protection in case market conditions become unfavorable.
For more information, see Floating-Rate Note with Embedded Options.
Tips
After creating an OptionEmbeddedFixedBond object, you can modify
the CallSchedule and CallExerciseStyle using
setCallExercisePolicy. Or, you can modify the
PutSchedule and PutExerciseStyle values
using setPutExercisePolicy.
Version History
Introduced in R2020aYou can price OptionEmbeddedFloatBond instruments using a
CoxIngersollRoss model object
and an IRTree pricing
method.
Although OptionEmbeddedFloatBond supports serial date numbers,
datetime values are recommended instead. The
datetime data type provides flexible date and time
formats, storage out to nanosecond precision, and properties to account for time
zones and daylight saving time.
To convert serial date numbers or text to datetime values, use the datetime function. For example:
t = datetime(738427.656845093,"ConvertFrom","datenum"); y = year(t)
y =
2021
There are no plans to remove support for serial date number inputs.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Seleccione un país/idioma
Seleccione un país/idioma para obtener contenido traducido, si está disponible, y ver eventos y ofertas de productos y servicios locales. Según su ubicación geográfica, recomendamos que seleccione: .
También puede seleccionar uno de estos países/idiomas:
Cómo obtener el mejor rendimiento
Seleccione China (en idioma chino o inglés) para obtener el mejor rendimiento. Los sitios web de otros países no están optimizados para ser accedidos desde su ubicación geográfica.
América
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)