Main Content

ldivide, .\

Element-wise quaternion left division

Syntax

Description

C = A.\B performs quaternion element-wise division by dividing each element of B by the corresponding element of A.

example

Examples

collapse all

Create a 2-by-1 quaternion array, and divide it element-by-element by a real scalar.

A = quaternion([1:4;5:8])
A = 2x1 quaternion array
     1 + 2i + 3j + 4k
     5 + 6i + 7j + 8k

B = 2;
C = A.\B
C = 2x1 quaternion array
     0.066667 -  0.13333i -      0.2j -  0.26667k
     0.057471 - 0.068966i -  0.08046j - 0.091954k

Create a 2-by-2 quaternion array, and divide it element-by-element by another 2-by-2 quaternion array.

q1 = quaternion([1:4;2:5;4:7;5:8]);
A = reshape(q1,2,2)
A = 2x2 quaternion array
     1 + 2i + 3j + 4k     4 + 5i + 6j + 7k
     2 + 3i + 4j + 5k     5 + 6i + 7j + 8k

q2 = quaternion(magic(4));
B = reshape(q2,2,2)
B = 2x2 quaternion array
     16 +  2i +  3j + 13k      9 +  7i +  6j + 12k
      5 + 11i + 10j +  8k      4 + 14i + 15j +  1k

C = A.\B
C = 2x2 quaternion array
          2.7 -      1.9i -      0.9j -      1.7k       1.5159 -  0.37302i -  0.15079j -  0.02381k
       2.2778 +  0.46296i -  0.57407j + 0.092593k       1.2471 +  0.91379i -  0.33908j -   0.1092k

Input Arguments

collapse all

Divisor, specified as a quaternion object, an array of quaternion objects of any dimensionality, a real scalar, or an array of real numbers of any dimensionality. Numeric values must be of data type single or double.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are the same or one of the dimensions is 1.

Dividend, specified as a quaternion object, an array of quaternion objects of any dimensionality, a real scalar, or an array of real numbers of any dimensionality. Numeric values must be of data type single or double.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are the same or one of the dimensions is 1.

Output Arguments

collapse all

Result of quaternion division, returned as a quaternion object or an array of quaternion objects.

Algorithms

collapse all

Quaternion Division

Given a quaternion A=a1+a2i+a3j+a4k and a real scalar p,

C=p.\A=a1p+a2pi+a3pj+a4pk

Note

For a real scalar p, A./p = A.\p.

Quaternion Division by a Quaternion Scalar

Given two quaternions A and B of compatible sizes, then

C=A.\B=A1.*B=(conj(A)norm(A)2).*B

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Version History

Introduced in R2018b