Minimización con gradiente y matriz hessiana
Este ejemplo muestra cómo resolver un problema de minimización no lineal con una matriz hessiana explícita tridiagonal . El problema consiste en encontrar para minimizar
donde = 1.000.
La función auxiliar brownfgh al final de este ejemplo calcula , su gradiente  y su matriz hessiana . Para especificar que el solver fminunc debe utilizar la información de la derivada, establezca las opciones SpecifyObjectiveGradient y HessianFcn mediante optimoptions. Para utilizar una matriz hessiana con fminunc, debe utilizar el algoritmo 'trust-region'.
options = optimoptions(@fminunc,'Algorithm','trust-region',... 'SpecifyObjectiveGradient',true,'HessianFcn','objective');
Establezca el parámetro n en 1.000 y el punto inicial xstart en –1 para componentes impares y en +1 para componentes pares.
n = 1000; xstart = -ones(n,1); xstart(2:2:n) = 1;
Encuentre el valor mínimo de .
[x,fval,exitflag,output] = fminunc(@brownfgh,xstart,options);
Local minimum found. Optimization completed because the size of the gradient is less than the value of the optimality tolerance. <stopping criteria details>
Examine la solución y el proceso de resolución.
disp(fval)
2.8709e-17
disp(exitflag)
1
disp(output)
         iterations: 7
          funcCount: 8
           stepsize: 0.0039
       cgiterations: 7
      firstorderopt: 4.7948e-10
          algorithm: 'trust-region'
            message: 'Local minimum found.↵↵Optimization completed because the size of the gradient is less than↵the value of the optimality tolerance.↵↵<stopping criteria details>↵↵Optimization completed: The first-order optimality measure, 4.794806e-10, ↵is less than options.OptimalityTolerance = 1.000000e-06, and no negative/zero↵curvature is detected in the trust-region model.'
    constrviolation: []
La función  es una suma de potencias de cuadrados, por lo que es no negativa. La solución fval es casi cero, así que es claramente un mínimo. El indicador de salida 1 también indica que fminunc encuentra una solución. La estructura output muestra que fminunc solo necesita siete iteraciones para obtener la solución.
Muestre los elementos más grandes y más pequeños de la solución.
disp(max(x))
1.1987e-10
disp(min(x))
-1.1987e-10
La solución está muy cerca del punto donde todos los elementos de x = 0.
Función auxiliar
Este código crea la función auxiliar brownfgh.
function [f,g,H] = brownfgh(x) %BROWNFGH Nonlinear minimization problem (function, its gradients % and Hessian) % Documentation example % Copyright 1990-2008 The MathWorks, Inc. % Evaluate the function. n=length(x); y=zeros(n,1); i=1:(n-1); y(i)=(x(i).^2).^(x(i+1).^2+1)+(x(i+1).^2).^(x(i).^2+1); f=sum(y); % % Evaluate the gradient. if nargout > 1 i=1:(n-1); g = zeros(n,1); g(i)= 2*(x(i+1).^2+1).*x(i).*((x(i).^2).^(x(i+1).^2))+... 2*x(i).*((x(i+1).^2).^(x(i).^2+1)).*log(x(i+1).^2); g(i+1)=g(i+1)+... 2*x(i+1).*((x(i).^2).^(x(i+1).^2+1)).*log(x(i).^2)+... 2*(x(i).^2+1).*x(i+1).*((x(i+1).^2).^(x(i).^2)); end % % Evaluate the (sparse, symmetric) Hessian matrix if nargout > 2 v=zeros(n,1); i=1:(n-1); v(i)=2*(x(i+1).^2+1).*((x(i).^2).^(x(i+1).^2))+... 4*(x(i+1).^2+1).*(x(i+1).^2).*(x(i).^2).*((x(i).^2).^((x(i+1).^2)-1))+... 2*((x(i+1).^2).^(x(i).^2+1)).*(log(x(i+1).^2)); v(i)=v(i)+4*(x(i).^2).*((x(i+1).^2).^(x(i).^2+1)).*((log(x(i+1).^2)).^2); v(i+1)=v(i+1)+... 2*(x(i).^2).^(x(i+1).^2+1).*(log(x(i).^2))+... 4*(x(i+1).^2).*((x(i).^2).^(x(i+1).^2+1)).*((log(x(i).^2)).^2)+... 2*(x(i).^2+1).*((x(i+1).^2).^(x(i).^2)); v(i+1)=v(i+1)+4*(x(i).^2+1).*(x(i+1).^2).*(x(i).^2).*((x(i+1).^2).^(x(i).^2-1)); v0=v; v=zeros(n-1,1); v(i)=4*x(i+1).*x(i).*((x(i).^2).^(x(i+1).^2))+... 4*x(i+1).*(x(i+1).^2+1).*x(i).*((x(i).^2).^(x(i+1).^2)).*log(x(i).^2); v(i)=v(i)+ 4*x(i+1).*x(i).*((x(i+1).^2).^(x(i).^2)).*log(x(i+1).^2); v(i)=v(i)+4*x(i).*((x(i+1).^2).^(x(i).^2)).*x(i+1); v1=v; i=[(1:n)';(1:(n-1))']; j=[(1:n)';(2:n)']; s=[v0;2*v1]; H=sparse(i,j,s,n,n); H=(H+H')/2; end end