Main Content

loss

Find classification error for support vector machine (SVM) classifier

Description

L = loss(SVMModel,Tbl,ResponseVarName) returns the classification error (see Classification Loss), a scalar representing how well the trained support vector machine (SVM) classifier (SVMModel) classifies the predictor data in table Tbl compared to the true class labels in Tbl.ResponseVarName.

The classification loss (L) is a generalization or resubstitution quality measure. Its interpretation depends on the loss function and weighting scheme, but, in general, better classifiers yield smaller classification loss values.

L = loss(SVMModel,Tbl,Y) returns the classification error for the predictor data in table Tbl and the true class labels in Y.

L = loss(SVMModel,X,Y) returns the classification error based on the predictor data in matrix X compared to the true class labels in Y.

example

L = loss(___,Name,Value) specifies options using one or more name-value pair arguments in addition to the input arguments in previous syntaxes. For example, you can specify the loss function and the classification weights.

Note

If the predictor data in X or Tbl contains any missing values and LossFun is not set to "classifcost", "classiferror", or "mincost", the loss function can return NaN. For more details, see loss can return NaN for predictor data with missing values.

example

Examples

collapse all

Load the ionosphere data set.

load ionosphere
rng(1); % For reproducibility

Train an SVM classifier. Specify a 15% holdout sample for testing, standardize the data, and specify that 'g' is the positive class.

CVSVMModel = fitcsvm(X,Y,'Holdout',0.15,'ClassNames',{'b','g'},...
    'Standardize',true);
CompactSVMModel = CVSVMModel.Trained{1}; % Extract the trained, compact classifier
testInds = test(CVSVMModel.Partition);   % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds,:);

CVSVMModel is a ClassificationPartitionedModel classifier. It contains the property Trained, which is a 1-by-1 cell array holding a CompactClassificationSVM classifier that the software trained using the training set.

Determine how well the algorithm generalizes by estimating the test sample classification error.

L = loss(CompactSVMModel,XTest,YTest)
L = 
0.0787

The SVM classifier misclassifies approximately 8% of the test sample.

Load the ionosphere data set.

load ionosphere
rng(1); % For reproducibility

Train an SVM classifier. Specify a 15% holdout sample for testing, standardize the data, and specify that 'g' is the positive class.

CVSVMModel = fitcsvm(X,Y,'Holdout',0.15,'ClassNames',{'b','g'},...
    'Standardize',true);
CompactSVMModel = CVSVMModel.Trained{1}; % Extract the trained, compact classifier
testInds = test(CVSVMModel.Partition);   % Extract the test indices
XTest = X(testInds,:);
YTest = Y(testInds,:);

CVSVMModel is a ClassificationPartitionedModel classifier. It contains the property Trained, which is a 1-by-1 cell array holding a CompactClassificationSVM classifier that the software trained using the training set.

Determine how well the algorithm generalizes by estimating the test sample hinge loss.

L = loss(CompactSVMModel,XTest,YTest,'LossFun','hinge')
L = 
0.2998

The hinge loss is approximately 0.3. Classifiers with hinge losses close to 0 are preferred.

Input Arguments

collapse all

SVM classification model, specified as a ClassificationSVM model object or CompactClassificationSVM model object returned by fitcsvm or compact, respectively.

Sample data used to train the model, specified as a table. Each row of Tbl corresponds to one observation, and each column corresponds to one predictor variable. Optionally, Tbl can contain additional columns for the response variable and observation weights. Tbl must contain all of the predictors used to train SVMModel. Multicolumn variables and cell arrays other than cell arrays of character vectors are not allowed.

If Tbl contains the response variable used to train SVMModel, then you do not need to specify ResponseVarName or Y.

If you trained SVMModel using sample data contained in a table, then the input data for loss must also be in a table.

If you set 'Standardize',true in fitcsvm when training SVMModel, then the software standardizes the columns of the predictor data using the corresponding means in SVMModel.Mu and the standard deviations in SVMModel.Sigma.

Data Types: table

Response variable name, specified as the name of a variable in Tbl. If Tbl contains the response variable used to train SVMModel, then you do not need to specify ResponseVarName.

You must specify ResponseVarName as a character vector or string scalar. For example, if the response variable Y is stored as Tbl.Y, then specify ResponseVarName as 'Y'. Otherwise, the software treats all columns of Tbl, including Y, as predictors when training the model.

The response variable must be a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. If the response variable is a character array, then each element must correspond to one row of the array.

Data Types: char | string

Predictor data, specified as a numeric matrix.

Each row of X corresponds to one observation (also known as an instance or example), and each column corresponds to one variable (also known as a feature). The variables in the columns of X must be the same as the variables that trained the SVMModel classifier.

The length of Y and the number of rows in X must be equal.

If you set 'Standardize',true in fitcsvm to train SVMModel, then the software standardizes the columns of X using the corresponding means in SVMModel.Mu and the standard deviations in SVMModel.Sigma.

Data Types: double | single

Class labels, specified as a categorical, character, or string array, logical or numeric vector, or cell array of character vectors. Y must be the same as the data type of SVMModel.ClassNames. (The software treats string arrays as cell arrays of character vectors.)

The length of Y must equal the number of rows in Tbl or the number of rows in X.

Name-Value Arguments

collapse all

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: loss(SVMModel,Tbl,Y,'Weights',W) weighs the observations in each row of Tbl using the corresponding weight in each row of the variable W in Tbl.

Loss function, specified as a built-in loss function name or a function handle.

  • This table lists the available loss functions. Specify one using its corresponding character vector or string scalar.

    ValueDescription
    "binodeviance"Binomial deviance
    "classifcost"Observed misclassification cost
    "classiferror"Misclassified rate in decimal
    "exponential"Exponential loss
    "hinge"Hinge loss
    "logit"Logistic loss
    "mincost"Minimal expected misclassification cost (for classification scores that are posterior probabilities)
    "quadratic"Quadratic loss

    'mincost' is appropriate for classification scores that are posterior probabilities. You can specify to use posterior probabilities as classification scores for SVM models by setting 'FitPosterior',true when you cross-validate the model using fitcsvm.

  • Specify your own function by using function handle notation.

    Suppose that n is the number of observations in X, and K is the number of distinct classes (numel(SVMModel.ClassNames)) used to create the input model (SVMModel). Your function must have this signature

    lossvalue = lossfun(C,S,W,Cost)
    where:

    • The output argument lossvalue is a scalar.

    • You choose the function name (lossfun).

    • C is an n-by-K logical matrix with rows indicating the class to which the corresponding observation belongs. The column order corresponds to the class order in SVMModel.ClassNames.

      Construct C by setting C(p,q) = 1 if observation p is in class q, for each row. Set all other elements of row p to 0.

    • S is an n-by-K numeric matrix of classification scores, similar to the output of predict. The column order corresponds to the class order in SVMModel.ClassNames.

    • W is an n-by-1 numeric vector of observation weights. If you pass W, the software normalizes the weights to sum to 1.

    • Cost is a K-by-K numeric matrix of misclassification costs. For example, Cost = ones(K) – eye(K) specifies a cost of 0 for correct classification and 1 for misclassification.

    Specify your function using 'LossFun',@lossfun.

For more details on loss functions, see Classification Loss.

Example: 'LossFun','binodeviance'

Data Types: char | string | function_handle

Observation weights, specified as a numeric vector or the name of a variable in Tbl. The software weighs the observations in each row of X or Tbl with the corresponding weight in Weights.

If you specify Weights as a numeric vector, then the size of Weights must be equal to the number of rows in X or Tbl.

If you specify Weights as the name of a variable in Tbl, you must do so as a character vector or string scalar. For example, if the weights are stored as Tbl.W, then specify Weights as 'W'. Otherwise, the software treats all columns of Tbl, including Tbl.W, as predictors.

If you do not specify your own loss function, then the software normalizes Weights to sum up to the value of the prior probability in the respective class.

Example: 'Weights','W'

Data Types: single | double | char | string

More About

collapse all

References

[1] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning, second edition. Springer, New York, 2008.

Extended Capabilities

expand all

Version History

Introduced in R2014a

expand all