nlpredci
Nonlinear regression prediction confidence intervals
Syntax
Description
[ returns
predictions, Ypred,delta]
= nlpredci(modelfun,X,beta,R,'Covar',CovB)Ypred, and 95% confidence interval
half-widths, delta, for the nonlinear regression
model modelfun at input values X.
Before calling nlpredci, use nlinfit to
fit modelfun and get the estimated coefficients, beta,
residuals, R, and variance-covariance matrix, CovB.
[ returns
predictions, Ypred,delta]
= nlpredci(modelfun,X,beta,R,'Jacobian',J)Ypred, and 95% confidence interval
half-widths, delta, for the nonlinear regression
model modelfun at input values X.
Before calling nlpredci, use nlinfit to
fit modelfun and get the estimated coefficients, beta,
residuals, R, and Jacobian, J.
If you use a robust option with nlinfit,
then you should use the Covar syntax rather than
the Jacobian syntax. The variance-covariance matrix, CovB,
is required to properly take the robust fitting into account.
Examples
Input Arguments
Name-Value Arguments
Output Arguments
More About
Tips
To compute confidence intervals for complex parameters or data, you need to split the problem into its real and imaginary parts. When calling
nlinfit:Define your parameter vector
betaas the concatenation of the real and imaginary parts of the original parameter vector.Concatenate the real and imaginary parts of the response vector
Yas a single vector.Modify your model function
modelfunto acceptXand the purely real parameter vector, and return a concatenation of the real and imaginary parts of the fitted values.
With the problem formulated this way,
nlinfitcomputes real estimates, and confidence intervals are feasible.
Algorithms
nlpredcitreatsNaNvalues in the residuals,R, or the Jacobian,J, as missing values, and ignores the corresponding observations.If the Jacobian,
J, does not have full column rank, then some of the model parameters might be nonidentifiable. In this case,nlpredcitries to construct confidence intervals for estimable predictions, and returnsNaNfor those that are not.
References
[1] Lane, T. P. and W. H. DuMouchel. “Simultaneous Confidence Intervals in Multiple Regression.” The American Statistician. Vol. 48, No. 4, 1994, pp. 315–321.
[2] Seber, G. A. F., and C. J. Wild. Nonlinear Regression. Hoboken, NJ: Wiley-Interscience, 2003.
Version History
Introduced before R2006a
