cvshrink
Cross-validate pruning and regularization of regression ensemble
Description
returns an vals = cvshrink(ens)L-by-T matrix with cross-validated
values of the mean squared error. L is the number of
Lambda values in the ens.Regularization structure. T is the number of
Threshold values on weak learner weights. If
ens does not have a Regularization
property containing values specified by the regularize function, set the Lambda name-value
argument.
[___]
= cvshrink(
specifies additional options using one or more name-value arguments. For example,
you can specify the number of folds to use, the fraction of data to use for holdout
validation, and lower cutoffs on weights for weak learners.ens,Name=Value)
Examples
Input Arguments
Name-Value Arguments
Output Arguments
Extended Capabilities
Version History
Introduced in R2011a
See Also
regularize | shrink | RegressionEnsemble | RegressionBaggedEnsemble | fitrensemble