acoth
Symbolic inverse hyperbolic cotangent function
Syntax
Description
Examples
Inverse Hyperbolic Cotangent Function for Numeric and Symbolic Arguments
Depending on its arguments, acoth
returns
floating-point or exact symbolic results.
Compute the inverse hyperbolic cotangent function for these numbers. Because these
numbers are not symbolic objects, acoth
returns floating-point
results.
A = acoth([-pi/2, -1, 0, 1/2, 1, pi/2])
A = -0.7525 + 0.0000i -Inf + 0.0000i 0.0000 + 1.5708i... 0.5493 + 1.5708i Inf + 0.0000i 0.7525 + 0.0000i
Compute the inverse hyperbolic cotangent function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, acoth
returns unresolved
symbolic calls.
symA = acoth(sym([-pi/2, -1, 0, 1/2, 1, pi/2]))
symA = [ -acoth(pi/2), Inf, -(pi*1i)/2, acoth(1/2), Inf, acoth(pi/2)]
Use vpa
to approximate symbolic results with floating-point
numbers:
vpa(symA)
ans = [ -0.75246926714192715916204347800251,... Inf,... -1.5707963267948966192313216916398i,... 0.54930614433405484569762261846126... - 1.5707963267948966192313216916398i,... Inf,... 0.75246926714192715916204347800251]
Plot Inverse Hyperbolic Cotangent Function
Plot the inverse hyperbolic cotangent function on the interval from -10 to 10.
syms x fplot(acoth(x),[-10 10]) grid on
Handle Expressions Containing Inverse Hyperbolic Cotangent Function
Many functions, such as diff
,
int
, taylor
, and rewrite
,
can handle expressions containing acoth
.
Find the first and second derivatives of the inverse hyperbolic cotangent function:
syms x diff(acoth(x), x) diff(acoth(x), x, x)
ans = -1/(x^2 - 1) ans = (2*x)/(x^2 - 1)^2
Find the indefinite integral of the inverse hyperbolic cotangent function:
int(acoth(x), x)
ans = log(x^2 - 1)/2 + x*acoth(x)
Find the Taylor series expansion of acoth(x)
for x >
0
:
assume(x > 0) taylor(acoth(x), x)
ans = x^5/5 + x^3/3 + x - (pi*1i)/2
For further computations, clear the assumption on x
by recreating it
using syms
:
syms x
Rewrite the inverse hyperbolic cotangent function in terms of the natural logarithm:
rewrite(acoth(x), 'log')
ans = log(1/x + 1)/2 - log(1 - 1/x)/2
Input Arguments
Version History
Introduced before R2006a