acoth
Symbolic inverse hyperbolic cotangent function
Syntax
Description
Examples
Inverse Hyperbolic Cotangent Function for Numeric and Symbolic Arguments
Depending on its arguments, acoth returns
floating-point or exact symbolic results.
Compute the inverse hyperbolic cotangent function for these numbers. Because these
numbers are not symbolic objects, acoth returns floating-point
results.
A = acoth([-pi/2, -1, 0, 1/2, 1, pi/2])
A = -0.7525 + 0.0000i -Inf + 0.0000i 0.0000 + 1.5708i... 0.5493 + 1.5708i Inf + 0.0000i 0.7525 + 0.0000i
Compute the inverse hyperbolic cotangent function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, acoth returns unresolved
symbolic calls.
symA = acoth(sym([-pi/2, -1, 0, 1/2, 1, pi/2]))
symA = [ -acoth(pi/2), Inf, -(pi*1i)/2, acoth(1/2), Inf, acoth(pi/2)]
Use vpa to approximate symbolic results with floating-point
numbers:
vpa(symA)
ans = [ -0.75246926714192715916204347800251,... Inf,... -1.5707963267948966192313216916398i,... 0.54930614433405484569762261846126... - 1.5707963267948966192313216916398i,... Inf,... 0.75246926714192715916204347800251]
Plot Inverse Hyperbolic Cotangent Function
Plot the inverse hyperbolic cotangent function on the interval from -10 to 10.
syms x fplot(acoth(x),[-10 10]) grid on

Handle Expressions Containing Inverse Hyperbolic Cotangent Function
Many functions, such as diff,
int, taylor, and rewrite,
can handle expressions containing acoth.
Find the first and second derivatives of the inverse hyperbolic cotangent function:
syms x diff(acoth(x), x) diff(acoth(x), x, x)
ans = -1/(x^2 - 1) ans = (2*x)/(x^2 - 1)^2
Find the indefinite integral of the inverse hyperbolic cotangent function:
int(acoth(x), x)
ans = log(x^2 - 1)/2 + x*acoth(x)
Find the Taylor series expansion of acoth(x) for x >
0:
assume(x > 0) taylor(acoth(x), x)
ans = x^5/5 + x^3/3 + x - (pi*1i)/2
For further computations, clear the assumption on x by recreating it
using syms:
syms x
Rewrite the inverse hyperbolic cotangent function in terms of the natural logarithm:
rewrite(acoth(x), 'log')
ans = log(1/x + 1)/2 - log(1 - 1/x)/2
Input Arguments
Version History
Introduced before R2006a