adjoint
Classical adjoint (adjugate) of square matrix
Syntax
Description
returns
the Classical Adjoint (Adjugate) Matrix
X = adjoint(A)X of A, such that A*X = det(A)*eye(n) =
X*A, where n is the number of rows in
A.
Examples
Find the classical adjoint of a numeric matrix.
A = magic(3); X = adjoint(A)
X = 3×3
-53.0000 52.0000 -23.0000
22.0000 -8.0000 -38.0000
7.0000 -68.0000 37.0000
Find the classical adjoint of a symbolic matrix.
syms x y z A = sym([x y z; 2 1 0; 1 0 2]); X = adjoint(A)
X =
Verify that det(A)*eye(3) = X*A by using isAlways.
cond = det(A)*eye(3) == X*A; isAlways(cond)
ans = 3×3 logical array
1 1 1
1 1 1
1 1 1
Compute the inverse of this matrix by computing its classical adjoint and determinant.
syms a b c d A = [a b; c d]; invA = adjoint(A)/det(A)
invA =
Verify that invA is the inverse of A.
isAlways(invA == inv(A))
ans = 2×2 logical array
1 1
1 1
Input Arguments
Square matrix, specified as a numeric matrix, matrix of symbolic scalar variables, symbolic matrix variable, symbolic function, symbolic matrix function, or symbolic expression.
Data Types: single | double | sym | symfun | symmatrix | symfunmatrix
More About
The classical adjoint, or adjugate, of a square matrix A is the square matrix X, such that the (i,j)-th entry of X is the (j,i)-th cofactor of A.
The (j,i)-th cofactor of A is defined as follows.
Aij is the submatrix of A obtained from A by removing the i-th row and j-th column.
The classical adjoint matrix should not be confused with the adjoint matrix. The adjoint is the conjugate transpose of a matrix while the classical adjoint is another name for the adjugate matrix or cofactor transpose of a matrix.
Version History
Introduced in R2013aThe adjoint function accepts an input argument of type
symfunmatrix.
The adjoint function accepts an input argument of type
symmatrix.
The adjoint function accepts a numeric matrix as an input
argument.
The adjoint function supports numeric matrices of type
double and single, as well as symbolic matrices of
type sym and symfun.
See Also
ctranspose | det | inv | rank
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Seleccione un país/idioma
Seleccione un país/idioma para obtener contenido traducido, si está disponible, y ver eventos y ofertas de productos y servicios locales. Según su ubicación geográfica, recomendamos que seleccione: .
También puede seleccionar uno de estos países/idiomas:
Cómo obtener el mejor rendimiento
Seleccione China (en idioma chino o inglés) para obtener el mejor rendimiento. Los sitios web de otros países no están optimizados para ser accedidos desde su ubicación geográfica.
América
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)