bessely
Bessel function of the second kind for symbolic expressions
Syntax
Description
bessely(
returns the
Bessel function of the second
kind, Yν(z).nu
,z
)
Examples
Find Bessel Function of Second Kind
Compute the Bessel functions of the second kind for these numbers. Because these numbers are not symbolic objects, you get floating-point results.
[bessely(0, 5), bessely(-1, 2), bessely(1/3, 7/4), bessely(1, 3/2 + 2*i)]
ans = -0.3085 + 0.0000i 0.1070 + 0.0000i 0.2358 + 0.0000i -0.4706 + 1.5873i
Compute the Bessel functions of the second kind for the numbers converted to symbolic
objects. For most symbolic (exact) numbers, bessely
returns unresolved
symbolic calls.
[bessely(sym(0), 5), bessely(sym(-1), 2),... bessely(1/3, sym(7/4)), bessely(sym(1), 3/2 + 2*i)]
ans = [ bessely(0, 5), -bessely(1, 2), bessely(1/3, 7/4), bessely(1, 3/2 + 2i)]
For symbolic variables and expressions, bessely
also returns
unresolved symbolic calls:
syms x y [bessely(x, y), bessely(1, x^2), bessely(2, x - y), bessely(x^2, x*y)]
ans = [ bessely(x, y), bessely(1, x^2), bessely(2, x - y), bessely(x^2, x*y)]
Solve Bessel Differential Equation for Bessel Functions
Solve this second-order differential equation. The solutions are the Bessel functions of the first and the second kind.
syms nu w(z) dsolve(z^2*diff(w, 2) + z*diff(w) +(z^2 - nu^2)*w == 0)
ans = C2*besselj(nu, z) + C3*bessely(nu, z)
Verify that the Bessel function of the second kind is a valid solution of the Bessel differential equation:
syms nu z isAlways(z^2*diff(bessely(nu, z), z, 2) + z*diff(bessely(nu, z), z)... + (z^2 - nu^2)*bessely(nu, z) == 0)
ans = logical 1
Special Values of Bessel Function of Second Kind
If the first parameter is an odd integer multiplied by 1/2, bessely
rewrites the Bessel functions in terms of elementary functions:
syms x bessely(1/2, x)
ans = -(2^(1/2)*cos(x))/(x^(1/2)*pi^(1/2))
bessely(-1/2, x)
ans = (2^(1/2)*sin(x))/(x^(1/2)*pi^(1/2))
bessely(-3/2, x)
ans = (2^(1/2)*(cos(x) - sin(x)/x))/(x^(1/2)*pi^(1/2))
bessely(5/2, x)
ans = -(2^(1/2)*((3*sin(x))/x + cos(x)*(3/x^2 - 1)))/(x^(1/2)*pi^(1/2))
Differentiate Bessel Functions of Second Kind
Differentiate the expressions involving the Bessel functions of the second kind:
syms x y diff(bessely(1, x)) diff(diff(bessely(0, x^2 + x*y -y^2), x), y)
ans = bessely(0, x) - bessely(1, x)/x ans = - bessely(1, x^2 + x*y - y^2) -... (2*x + y)*(bessely(0, x^2 + x*y - y^2)*(x - 2*y) -... (bessely(1, x^2 + x*y - y^2)*(x - 2*y))/(x^2 + x*y - y^2))
Find Bessel Function for Matrix Input
Call bessely
for the matrix A
and the value 1/2.
The result is a matrix of the Bessel functions bessely(1/2,
A(i,j))
.
syms x A = [-1, pi; x, 0]; bessely(1/2, A)
ans = [ (2^(1/2)*cos(1)*1i)/pi^(1/2), 2^(1/2)/pi] [ -(2^(1/2)*cos(x))/(x^(1/2)*pi^(1/2)), Inf]
Plot Bessel Functions of Second Kind
Plot the Bessel functions of the second kind for .
syms x y fplot(bessely(0:3,x)) axis([0 10 -1 0.6]) grid on ylabel('Y_v(x)') legend('Y_0','Y_1','Y_2','Y_3', 'Location','Best') title('Bessel functions of the second kind')
Input Arguments
More About
Tips
Calling
bessely
for a number that is not a symbolic object invokes the MATLAB®bessely
function.At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix,
bessely(nu,z)
expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.
References
[1] Olver, F. W. J. “Bessel Functions of Integer Order.” Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.
[2] Antosiewicz, H. A. “Bessel Functions of Fractional Order.” Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.
Version History
Introduced in R2014a