latex
LaTeX form of symbolic expression
Syntax
Description
Examples
Find the LaTeX form of the symbolic expressions x^2 + 1/x
and sin(pi*x) + phi
.
syms x phi chr = latex(x^2 + 1/x)
chr = '\frac{1}{x}+x^2'
chr = latex(sin(pi*x) + phi)
chr = '\phi +\sin\left(\pi \,x\right)'
Find the LaTeX form of the symbolic array S
.
syms x
S = [sym(1)/3 x; exp(x) x^2]
S =
chr = latex(S)
chr = '\left(\begin{array}{cc} \frac{1}{3} & x\\ {\mathrm{e}}^x & x^2 \end{array}\right)'
Perform computation using several symbolic matrix variables, and then find their LaTeX forms.
Create 3
-by-3
and 3
-by-1
symbolic matrix variables.
syms A 3 matrix syms X [3 1] matrix
Find the Hessian matrix of . Derived equations involving symbolic matrix variables appear in typeset as they would be in textbooks.
f = X.'*A*X
f =
H = diff(f,X,X.')
H =
Generate the LaTeX forms of the symbolic matrix variables f
and H
.
chrf = latex(f)
chrf = '{\textbf{X}}^{\mathrm{T}}\,\textbf{A}\,\textbf{X}'
chrH = latex(H)
chrH = '{\textbf{A}}^{\mathrm{T}}+\textbf{A}'
Perform computation using symbolic matrix functions, and then find their LaTeX forms.
Create a 3
-by-1
symbolic matrix variable.
syms X [3 1] matrix
Create a symbolic matrix function that represents the formula .
syms f(X) [1 1] matrix keepargs f(X) = X.'*X
f(X) =
Find the derivative of with respect to .
Df = diff(f,X)
Df(X) =
Generate the LaTeX forms of the symbolic matrix functions f
and Df
.
chrf = latex(f)
chrf = '{\textbf{X}}^{\mathrm{T}}\,\textbf{X}'
chrDf = latex(Df)
chrDf = '2\,{\textbf{X}}^{\mathrm{T}}'
Modify generated LaTeX by changing symbolic settings using the sympref
function.
Generate the LaTeX form of the expression with the default symbolic setting.
sympref("default");
chr = latex(sym(pi))
chr = '\pi '
Set "FloatingPointOutput"
to true
to return symbolic output in floating-point format. Generate the LaTeX form of in floating-point format.
sympref("FloatingPointOutput",true);
chr = latex(sym(pi))
chr = '3.1416'
Now change the output order of a symbolic polynomial. Create a symbolic polynomial and set "PolynomialDisplayStyle"
to "ascend"
. Generate the LaTeX form of the polynomial sorted in ascending order.
syms x; poly = x^2 - 2*x + 1; sympref("PolynomialDisplayStyle","ascend"); chr = latex(poly)
chr = '1-2\,x+x^2'
The symbolic settings that you set using sympref
persist through your current and future MATLAB® sessions. Restore the default values by specifying the "default"
option.
sympref("default");
For and from to , plot the 3-D surface . Store the axes object in a
by using gca
. Use latex
interpreter for the tick labels.
Create the -axis ticks by spanning the -axis limits at intervals of pi/2
. Convert the axis limits to precise multiples of pi/2
using round
and get the symbolic tick values in S
. Set the locations of the -axis ticks by using the xticks
function. Create the LaTeX labels for the -axis by using arrayfun
to apply latex
to S
and then concatenating $
. Display the labels by using the xticklabels
function.
Repeat these steps for the -axis. Set the - and -axes labels and the title using the latex
interpreter.
syms x y f = y*sin(x)-x*cos(y); fsurf(f,[-2*pi 2*pi]) a = gca; a.TickLabelInterpreter = "latex"; S = sym(a.XLim(1):pi/2:a.XLim(2)); S = sym(round(S/pi*2)*pi/2); xticks(double(S)); labels = "$" + arrayfun(@latex,S,UniformOutput=false) + "$"; xticklabels(labels); S = sym(a.YLim(1):pi/2:a.YLim(2)); S = sym(round(S/pi*2)*pi/2); yticks(double(S)) labels = "$" + arrayfun(@latex,S,UniformOutput=false) + "$"; yticklabels(labels); xlabel("$x$",Interpreter="latex"); ylabel("$y$",Interpreter="latex"); zlabel("$z$",Interpreter="latex"); titletext = "$" + latex(f) + "$ for $x$ and $y$ in $[-2\pi,2\pi]$"; title(titletext,Interpreter="latex")
Input Arguments
Input, specified as a symbolic number, variable, vector, array, function, expression, matrix variable, or symbolic matrix function.
Data Types: sym
| symfun
| symmatrix
| symfunmatrix
Version History
Introduced before R2006aThe latex
function accepts an input argument of type
symfunmatrix
. For an example, see LaTeX Form of Symbolic Matrix Functions.
The latex
function accepts an input argument of type
symmatrix
. For an example, see LaTeX Form of Symbolic Matrix Variables.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Seleccione un país/idioma
Seleccione un país/idioma para obtener contenido traducido, si está disponible, y ver eventos y ofertas de productos y servicios locales. Según su ubicación geográfica, recomendamos que seleccione: .
También puede seleccionar uno de estos países/idiomas:
Cómo obtener el mejor rendimiento
Seleccione China (en idioma chino o inglés) para obtener el mejor rendimiento. Los sitios web de otros países no están optimizados para ser accedidos desde su ubicación geográfica.
América
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)