whittakerW
Whittaker W function
Syntax
Description
whittakerW(
returns the value of the Whittaker W function.a
,b
,z
)
Examples
Compute Whittaker W Function for Numeric Input
Compute the Whittaker W function for these numbers. Because these numbers are not symbolic objects, you get floating-point results.
[whittakerW(1, 1, 1), whittakerW(-2, 1, 3/2 + 2*i),... whittakerW(2, 2, 2), whittakerW(3, -0.3, 1/101)]
ans = 1.1953 -0.0156 - 0.0225i 4.8616 -0.1692
Compute Whittaker W Function for Symbolic Input
Compute the Whittaker W function for the numbers converted to
symbolic objects. For most symbolic (exact) numbers, whittakerW
returns
unresolved symbolic calls.
[whittakerW(sym(1), 1, 1), whittakerW(-2, sym(1), 3/2 + 2*i),... whittakerW(2, 2, sym(2)), whittakerW(sym(3), -0.3, 1/101)]
ans = [ whittakerW(1, 1, 1), whittakerW(-2, 1, 3/2 + 2i), whittakerW(2, 2, 2), whittakerW(3, -3/10, 1/101)]
For symbolic variables and expressions, whittakerW
also returns
unresolved symbolic calls:
syms a b x y [whittakerW(a, b, x), whittakerW(1, x, x^2),... whittakerW(2, x, y), whittakerW(3, x + y, x*y)]
ans = [ whittakerW(a, b, x), whittakerW(1, x, x^2), whittakerW(2, x, y), whittakerW(3, x + y, x*y)]
Solve ODE for Whittaker Functions
Solve this second-order differential equation. The solutions are given in terms of the Whittaker functions.
syms a b w(z) dsolve(diff(w, 2) + (-1/4 + a/z + (1/4 - b^2)/z^2)*w == 0)
ans = C2*whittakerM(-a, -b, -z) + C3*whittakerW(-a, -b, -z)
Verify Whittaker Functions are Solution of ODE
Verify that the Whittaker W function is a valid solution of this differential equation:
syms a b z isAlways(diff(whittakerW(a, b, z), z, 2) +... (-1/4 + a/z + (1/4 - b^2)/z^2)*whittakerW(a, b, z) == 0)
ans = logical 1
Verify that whittakerW(-a, -b, -z)
also is a valid solution of this
differential equation:
syms a b z isAlways(diff(whittakerW(-a, -b, -z), z, 2) +... (-1/4 + a/z + (1/4 - b^2)/z^2)*whittakerW(-a, -b, -z) == 0)
ans = logical 1
Compute Special Values of Whittaker W Function
The Whittaker W function has special values for some parameters:
whittakerW(sym(-3/2), 1/2, 0)
ans = 4/(3*pi^(1/2))
syms a b x whittakerW(0, b, x)
ans = (x^(b + 1/2)*besselk(b, x/2))/(x^b*pi^(1/2))
whittakerW(a, -a + 1/2, x)
ans = x^(1 - a)*x^(2*a - 1)*exp(-x/2)
whittakerW(a - 1/2, a, x)
ans = (x^(a + 1/2)*exp(-x/2)*exp(x)*igamma(2*a, x))/x^(2*a)
Differentiate Whittaker W Function
Differentiate the expression involving the Whittaker W function:
syms a b z diff(whittakerW(a,b,z), z)
ans = - (a/z - 1/2)*whittakerW(a, b, z) -... whittakerW(a + 1, b, z)/z
Compute Whittaker W Function for Matrix Input
Compute the Whittaker W function for the elements of matrix
A
:
syms x A = [-1, x^2; 0, x]; whittakerW(-1/2, 0, A)
ans = [ -exp(-1/2)*(ei(1) + pi*1i)*1i,... exp(x^2)*exp(-x^2/2)*expint(x^2)*(x^2)^(1/2)] [ 0,... x^(1/2)*exp(-x/2)*exp(x)*expint(x)]
Input Arguments
More About
Tips
All non-scalar arguments must have the same size. If one or two input arguments are non-scalar, then
whittakerW
expands the scalars into vectors or matrices of the same size as the non-scalar arguments, with all elements equal to the corresponding scalar.
References
[1] Slater, L. J. “Confluent Hypergeometric Functions.” Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.
Version History
Introduced in R2012a