wlanHEDataBitRecover
Recover bits from HE-Data field
Syntax
Description
recovers dataBits
= wlanHEDataBitRecover(rxDataSym
,noiseVarEst
,cfgHE
)dataBits
, a column vector of bits, from
rxDataSym
, the equalized OFDM symbols that make up the HE-Data
field of a high-efficiency single-user (HE SU) transmission. The function recovers
dataBits
by using noise variance estimate
noiseVarEst
and HE transmission parameters
cfgHE
.
recovers dataBits
= wlanHEDataBitRecover(rxDataSym
,noiseVarEst
,cfgHE
,userIdx
)dataBits
for one user, specified by user index
userIdx
, in a high-efficiency multi-user (HE MU)
transmission.
specifies algorithm options by using one or more name-value pair arguments, in addition to
any input argument combination from previous syntaxes. For example,
dataBits
= wlanHEDataBitRecover(___,Name,Value
)'LDPCDecodingMethod','layered-bp'
specifies the layered belief
propagation low-density parity-check (LDPC) decoding algorithm.
Examples
Recover HE-Data Field from HE SU Transmission
Configure an HE SU transmission by creating a configuration object with the specified modulation and coding scheme (MCS). Extract the channel bandwidth.
cfgHESU = wlanHESUConfig('MCS',0);
cbw = cfgHESU.ChannelBandwidth;
Create a sequence of data bits and generate an HE SU waveform.
bits = randi([0 1],8*getPSDULength(cfgHESU),1,'int8');
waveform = wlanWaveformGenerator(bits,cfgHESU);
Create a WLAN recovery configuration object, specifying the known channel bandwidth and packet format.
cfgRX = wlanHERecoveryConfig('ChannelBandwidth',cbw,'PacketFormat','HE-SU');
Recover the HE signaling fields by retrieving the field indices and performing the relevant demodulation operations.
ind = wlanFieldIndices(cfgRX); heLSIGandRLSIG = waveform(ind.LSIG(1):ind.RLSIG(2),:); symLSIG = wlanHEDemodulate(heLSIGandRLSIG,'L-SIG',cbw); info = wlanHEOFDMInfo('L-SIG',cbw);
Merge the L-SIG and RL-SIG fields for diversity and obtain the data subcarriers.
symLSIG = mean(symLSIG,2); lsig = symLSIG(info.DataIndices,:);
Decode the L-SIG field, assuming a noiseless channel, and use the length field to update the recovery object.
noiseVarEst = 0; [~,~,lsigInfo] = wlanLSIGBitRecover(lsig,noiseVarEst); cfgRX.LSIGLength = lsigInfo.Length;
Recover and demodulate the HE-SIG-A field, obtain the data subcarriers, and recover the HE-SIG-A bits.
heSIGA = waveform(ind.HESIGA(1):ind.HESIGA(2),:);
symSIGA = wlanHEDemodulate(heSIGA,'HE-SIG-A',cbw);
siga = symSIGA(info.DataIndices,:);
[sigaBits,failCRC] = wlanHESIGABitRecover(siga,0);
Update the recovery configuration object with the recovered HE-SIG-A bits and obtain the updated field indices.
cfgHE = interpretHESIGABits(cfgRX,sigaBits); ind = wlanFieldIndices(cfgHE);
Retrieve and decode the HE-Data field.
heData = waveform(ind.HEData(1):ind.HEData(2),:); symData = wlanHEDemodulate(heData,'HE-Data', ... cbw,cfgHE.GuardInterval,[cfgHE.RUSize cfgHE.RUIndex]); infoData = wlanHEOFDMInfo('HE-Data',cbw,cfgHE.GuardInterval,[cfgHE.RUSize cfgHE.RUIndex]); rxDataSym = symData(infoData.DataIndices,:,:); dataBits = wlanHEDataBitRecover(rxDataSym,noiseVarEst,cfgHE);
Confirm that the recovered bits match the transmitted bits.
isequal(bits,dataBits)
ans = logical
1
Recover HE-Data Field from HE SU Transmission in AWGN Channel
Create an HE SU configuration object, specifying a modulation and coding scheme of 11.
cfgHE = wlanHESUConfig('MCS',11);
Get the PSDU length of the waveform in bits. Generate a random sequence of bits with length equal to the PSDU length. Generate a waveform for the bits and the configuration.
psduLength = 8*getPSDULength(cfgHE);
bits = randi([0 1],psduLength,1,'int8');
waveform = wlanWaveformGenerator(bits,cfgHE);
Set a signal-to-noise ratio (SNR) of 30 dB, and pass the waveform through an AWGN channel.
snr = 30; rx = awgn(waveform,snr);
Extract the HE-Data field from the received waveform.
ind = wlanFieldIndices(cfgHE); rxData = rx(ind.HEData(1):ind.HEData(2),:);
Perform OFDM demodulation on the received HE-Data field.
sym = wlanHEDemodulate(rxData,'HE-Data',cfgHE);
Obtain the data subcarriers from the received symbols.
info = wlanHEOFDMInfo('HE-Data',cfgHE);
rxDataSym = sym(info.DataIndices,:,:);
Recover the bits from the HE-Data field for the appropriate noise variance estimate.
noiseVarEst = 10^(-snr/10); dataBits = wlanHEDataBitRecover(rxDataSym,noiseVarEst,cfgHE);
Confirm that the recovered bits match the transmitted bits.
isequal(bits,dataBits)
ans = logical
1
Recover Bits from HE-Data Field of HE MU Transmission
Configure an HE MU transmission for two users, specifying a channel bandwidth of 20 MHz and two 106-tone resource units (RUs).
AllocationIndex = 96; cfgHE = wlanHEMUConfig(AllocationIndex);
Specify the MCS for both users and an APEP length for the second user.
cfgHE.User{1}.MCS = 4; cfgHE.User{2}.APEPLength = 1e3; cfgHE.User{2}.MCS = 7;
Generate a random PSDU for each user.
numUsers = numel(cfgHE.User); psduLength = getPSDULength(cfgHE); bits = cell(1,numUsers); for i = 1:numUsers bits{i} = randi([0 1],8*psduLength(i),1); end
Generate an OFDMA waveform and transmit through an AWGN channel for the specified SNR.
waveform = wlanWaveformGenerator(bits,cfgHE); snr = 25; noiseVarEst = 10^(-snr/10); rx = awgn(waveform,snr);
Extract the HE-Data field from the received waveform.
ind = wlanFieldIndices(cfgHE); rxData = rx(ind.HEData(1):ind.HEData(2),:);
Perform OFDM demodulation on the received HE-Data field for each RU, obtain the data subcarriers, and recover the bits for each user.
allocationInfo = ruInfo(cfgHE); for userIdx = 1:allocationInfo.NumUsers ruNumber = allocationInfo.RUNumbers(userIdx); sym = wlanHEDemodulate(rxData,'HE-Data',cfgHE,ruNumber);
Because this example does not use equalization, we must scale the received symbols by a scaling factor equal to the ratio of the total number of tones to the number of tones in the RU of interest.
sf = sqrt(sum(allocationInfo.RUSizes)/allocationInfo.RUSizes(userIdx)); symScaled = sf*sym;
Extract the data subcarriers.
ofdmInfo = wlanHEOFDMInfo('HE-Data',cfgHE,ruNumber);
rxDataSym = symScaled(ofdmInfo.DataIndices,:,:);
Assume a CSI estimate of all ones and recover the bits, confirming that the recovered bits match the transmitted bits.
csi = ones(length(rxDataSym),1);
dataBits = wlanHEDataBitRecover(rxDataSym,noiseVarEst,csi,cfgHE,userIdx);
disp(isequal(dataBits,bits{userIdx}))
end
1 1
Recover Bits from HE-Data Field from HE TB Transmission
Generate a WLAN HE TB waveform in response to a frame containing the TRS control subfield.
cfgHE = getTRSConfiguration(wlanHETBConfig);
psduLength = 8*getPSDULength(cfgHE);
bits = randi([0,1],psduLength,1,'int8');
waveform = wlanWaveformGenerator(bits,cfgHE);
Pass the waveform through an AWGN channel with an SNR of 30 dB.
snr = 30; rx = awgn(waveform,snr);
Extract the HE-Data field from the received waveform.
ind = wlanFieldIndices(cfgHE); rxData = rx(ind.HEData(1):ind.HEData(2),:);
Demodulate the waveform and extract the data subcarriers.
demod = wlanHEDemodulate(rxData,'HE-Data',cfgHE); info = wlanHEOFDMInfo('HE-Data',cfgHE); rxDataSym = demod(info.DataIndices,:,:);
Recover the data bits subject to the specified estimates for CSI and noise variance, implementing normalized min-sum low-density parity-check (LDPC) decoding.
csi = ones(length(rxDataSym),1); noiseVarEst = 10^(-snr/10); dataBits = wlanHEDataBitRecover(rxDataSym,noiseVarEst,csi,cfgHE, ... 'LDPCDecodingMethod','norm-min-sum');
Confirm that the recovered information bits match the transmitted PSDU.
isequal(dataBits,bits)
ans = logical
1
Input Arguments
rxDataSym
— Demodulated HE-Data field for a user
complex-valued array
Demodulated HE-Data field for a user, specified as a complex-valued array of size NSD-by-NSym-by-NSS.
NSD is the number of data subcarriers in the HE-Data field.
NSym is the number of OFDM symbols.
NSS is the number of spatial streams.
The contents and size of this input depend on the HE format specified in
the cfgHE
input.
Data Types: single
| double
Complex Number Support: Yes
noiseVarEst
— Noise variance estimate
nonnegative scalar
Noise variance estimate, specified as a nonnegative scalar.
Data Types: single
| double
csi
— Channel state information
real-valued array
Channel state information, specified as a real-valued array of size NSD-by-NSS.
NSD is the number of data subcarriers in the HE-Data field.
NSS is the number of spatial streams.
Data Types: single
| double
cfgHE
— HE transmission configuration
wlanHESUConfig
object | wlanHEMUConfig
object | wlanHETBConfig
object | wlanHERecoveryConfig
object
HE transmission configuration, specified as an object of type wlanHESUConfig
,
wlanHEMUConfig
,
wlanHETBConfig
, or wlanHERecoveryConfig
.
userIdx
— User index
integer in the interval [1, 8]
User index, specified as an integer in the interval [1, 8].
Data Types: single
| double
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name
in quotes.
Example: 'MaximumLDPCIterationCount','12','EarlyTermination','false'
specifies a maximum of 12 LDPC decoding iterations and disables early termination so that
the decoder completes the 12 iterations.
LDPCDecodingMethod
— LDPC decoding algorithm
'bp'
(default) | 'layered-bp'
| 'norm-min-sum'
| 'offset-min-sum'
LDPC decoding algorithm, specified as the comma-separated pair consisting of
'LDPCDecodingMethod'
and one of these values:
'bp'
— Use the belief propagation (BP) decoding algorithm. For more information, see Belief Propagation Decoding.'layered-bp'
— Use the layered BP decoding algorithm, suitable for quasi-cyclic parity check matrices (PCMs). For more information, see Layered Belief Propagation Decoding.'norm-min-sum'
— Use the layered BP decoding algorithm with the normalized min-sum approximation. For more information, see Normalized Min-Sum Decoding.'offset-min-sum'
— Use the layered BP decoding algorithm with the offset min-sum approximation. For more information, see Offset Min-Sum Decoding.
Note
When you specify this input as 'norm-min-sum'
or
'offset-min-sum'
, the function
sets input log-likelihood ratio (LLR) values that are greater than
1e10
or less than -1e10
to
1e10
and -1e10
, respectively. The function
then uses these values when executing the LDPC decoding algorithm.
Dependencies
To enable this argument, specify the ChannelCoding
property
of the cfgHE
input as 'LDPC'
for the user
corresponding to the userIdx
input.
Data Types: char
| string
MinSumScalingFactor
— Scaling factor for normalized min-sum LDPC decoding
0.75
(default) | scalar in interval (0, 1]
Scaling factor for normalized min-sum LDPC decoding, specified as the name-value
argument consisting of MinSumScalingFactor
and a scalar in the
interval (0, 1].
Dependencies
To enable this argument, specify the
'
LDPCDecodingMethod
'
name-value argument as "norm-min-sum"
.
Data Types: double
MinSumOffset
— Offset for offset min-sum LDPC decoding
0.5
(default) | nonnegative scalar
Offset for offset min-sum LDPC decoding, specified as the name-value argument
consisting of MinSumOffset
and a nonnegative scalar.
Dependencies
To enable this argument, specify the
'
LDPCDecodingMethod
'
name-value argument as offset-min-sum
.
Data Types: double
MaximumLDPCIterationCount
— Maximum number of LDPC decoding iterations
12
(default) | positive integer
Maximum number of LDPC decoding iterations, specified as the comma-separated pair
consisting of 'MaximumLDPCIterationCount'
and a positive
integer.
Dependencies
To enable this argument, set the ChannelCoding
property of
the cfgHE
input to 'LDPC'
for the user
corresponding to the userIdx
input.
Data Types: double
EarlyTermination
— Enable early termination of LDPC decoding
false
or 0
(default) | true
or 1
Enable early termination of LDPC decoding, specified as the comma-separated pair
consisting of 'EarlyTermination'
and 1
(true
) or 0
(false
).
When you set this value to
0
(false
), LDPC decoding completes the number of iterations specified in the'
MaximumLDPCIterationCount'
'
name-value pair argument regardless of parity check status.When you set this value to
1
(true
), LDPC decoding terminates when all parity checks are satisfied.
Dependencies
To enable this argument, set the ChannelCoding
property of
the cfgHE
input to 'LDPC'
for the user
corresponding to the userIdx
input.
Data Types: logical
Output Arguments
dataBits
— Bits recovered from HE-Data field
binary-valued column vector
Bits recovered from the HE-Data field, returned as a binary valued column vector of
length 8 × LPSDU, where
LPSDU is the PSDU length in bytes. Calculate
the PSDU length by using the getPSDULength
object function with the cfgHE
input.
Data Types: int8
More About
HE-Data Field
The HE-Data field of the HE PPDU contains data for one or more users.
As described in [1], the number of OFDM symbols in the HE-Data field depends on the length value of the legacy signal (L-SIG) field in accordance with equation (27-11), the preamble duration, and the settings of the GI+LTF Size, Pre-FEC Padding Factor, and PE Disambiguity subfields of the HE-SIG-A field in accordance with section 27.3.10.7.
Data symbols in an HE PPDU use a discrete Fourier transform (DFT) period of 12.8 μs and subcarrier spacing of 78.125 kHz.
Data symbols in an HE PPDU support GI durations of 0.8 μs, 1.6 μs, and 3.2 μs.
HE PPDUs have single-stream pilots in the HE-Data field.
When the transmission uses BCC encoding, the HE-Data field consists of the SERVICE field, the PSDU, the pre-FEC padding bits, the tail bits, and the post-FEC padding bits.
When the transmission uses LDPC encoding, the HE-Data field consists of the SERVICE field, the PSDU, the pre-FEC padding bits, the post-FEC padding bits, and the packet extension (PE) field.
For more information, see HE PPDU Structure and 802.11ax Waveform Generation.
Algorithms
This function supports these four LDPC decoding algorithms.
Belief Propagation Decoding
The function implements the BP algorithm based on the decoding algorithm presented in [2]. For transmitted LDPC-encoded codeword , the input to the LDPC decoder is the LLR given by
.
In each iteration, the function updates the key components of the algorithm based on these equations:
,
, initialized as before the first iteration, and
.
At the end of each iteration, is an updated estimate of the LLR value for the transmitted bit, . The value is the soft-decision output for . If is negative, the hard-decision output for is 1. Otherwise, the output is 0.
Index sets and are based on the PCM such that the sets and correspond to all nonzero elements in column i and row j of the PCM, respectively.
This figure demonstrates how to compute these index sets for PCM for the case i = 5 and j = 3.
To avoid infinite numbers in the algorithm equations, atanh(1) and atanh(–1) are set to 19.07 and –19.07, respectively. Due to finite precision, MATLAB® returns 1 for tanh(19.07) and –1 for tanh(–19.07).
When you specify the
'
EarlyTermination
'
name-value
pair argument as 0
(false
), the decoding terminates
after the number of iterations specified by the
'
MaximumLDPCIterationCount
'
name-value pair argument. When you specify the
'
EarlyTermination
'
name-value
pair argument as 1
(true
), the decoding terminates
when all parity checks are satisfied () or after the number of iterations specified by the
'
MaximumLDPCIterationCount
'
name-value pair argument.
Layered Belief Propagation Decoding
The function implements the layered BP algorithm based on the decoding algorithm presented in Section II.A of [3]. The decoding loop iterates over subsets of rows (layers) of the PCM.
For each row, m, in a layer and each bit index, j, the implementation updates the key components of the algorithm based on these equations.
(1)
(2)
(3)
(4)
(5)
(6)
For each layer, the decoding equation (6) works on the combined input obtained from the current LLR inputs, , and the previous layer updates, .
Because the layered BP algorithm updates only a subset of the nodes in a layer, this algorithm is faster than the BP algorithm. To achieve the same error rate as attained with BP decoding, use half the number of decoding iterations when using the layered BP algorithm.
Normalized Min-Sum Decoding
The function implements the normalized min-sum decoding algorithm by following the layered BP algorithm with equation (3) replaced by
,
where α is the scaling factor specified by the
'
MinSumScalingFactor
'
name-value pair argument. This equation is an adaptation of equation (4) presented in [4].
Offset Min-Sum Decoding
The function implements the offset min-sum decoding algorithm by following the layered BP algorithm with equation (3) replaced by
,
where β is the offset specified by the
'
MinSumOffset
'
name-value pair
argument. This equation is an adaptation of equation (5) presented in [4].
References
[1] IEEE® Std 802.11ax™-2021 (Amendment to IEEE Std 802.11™-2020). “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. Amendment 1: Enhancements for High Efficiency WLAN.” IEEE Standard for Information Technology — Telecommunications and Information Exchange between Systems. Local and Metropolitan Area Networks — Specific Requirements.
[2] Gallager, Robert G. Low-Density Parity-Check Codes. Cambridge, MA: MIT Press, 1963.
[3] Hocevar, D.E. "A Reduced Complexity Decoder Architecture via Layered Decoding of LDPC Codes." In IEEE Workshop on Signal Processing Systems, 2004. SIPS 2004., 107-12. Austin, Texas, USA: IEEE, 2004. https://doi.org/10.1109/SIPS.2004.1363033.
[4] Jinghu Chen, R.M. Tanner, C. Jones, and Yan Li. "Improved Min-Sum Decoding Algorithms for Irregular LDPC Codes." In Proceedings. International Symposium on Information Theory, 2005. ISIT 2005., 449-53, 2005. https://doi.org/10.1109/ISIT.2005.1523374.
Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
Version History
Introduced in R2018bR2023b: Single precision support
This function supports single-precision values for its numeric input arguments.
See Also
Functions
Objects
Comando de MATLAB
Ha hecho clic en un enlace que corresponde a este comando de MATLAB:
Ejecute el comando introduciéndolo en la ventana de comandos de MATLAB. Los navegadores web no admiten comandos de MATLAB.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)