Problem with Parabolic Linear PDE-crank-nicolson

2 visualizaciones (últimos 30 días)
doliph
doliph el 10 de Nov. de 2013
Respondida: zanubah adillah rahmah el 3 de Jun. de 2023
Hi!
I am using crank nicolson method to implicitly solve a mass diffusion equation. Where a gas concentration above a 10cm column of water is held at C=.01mol/m3. The Diffusion constant is D=2*10^-9m2/s. Boundary conditions are assumed to be C=0 @ L=10cm. I am getting a resultant plot and solution but it doesn't necessarily make sense with what you would expect the results to be.
Any suggestions would be greatly appreciated!
function Crank
% Parameters needed to solve the equation via Crank-Nicholson method
timesteps = 100; % Number of time steps
L =10.; % characteristic length cm
dt = .01;
n = 50.; % Number of space steps
dz = L/n;
diffco = (2*10^-9)*10000*3600.*24.; % diffusion coefficient in days
xi = diffco*dt/(dz*dz); % Parameter of the method
% Initial Concentration
for i = 1:n+1
z(i) =(i-1)*dz;
u(i,1) =.01;
end
% Concentration at the boundary (C=0)
for k=1:timesteps+1
u(1,k) = 0;
u(n+1,k) = 0.;
time(k) = (k-1)*dt;
end
% Defining the Matrices M_right and M_left in the method
aL(1:n-2)=-xi;
bL(1:n-1)=2.+2.*xi;
cL(1:n-2)=-xi;
MMl=diag(bL,0)+diag(aL,-1)+diag(cL,1);
aR(1:n-2)=xi;
bR(1:n-1)=2.-2.*xi;
cR(1:n-2)=xi;
MMr=diag(bR,0)+diag(aR,-1)+diag(cR,1);
% Implementation of the Crank-Nicholson method
for k=2:timesteps % Time Loop
uu=u(2:n,k-1);
u(2:n,k)=inv(MMl)*MMr*uu;
end
% Graphical representation of the temperature at different selected times
figure(1)
plot(z,u)
title('Concentration-Crank-Nicholson method')
xlabel('Z')
ylabel('C')
%u'
figure(2)
mesh(z,time,u')
title('Concentration within the Crank-Nicholson method')
xlabel('Z')
ylabel('Concentration')
end

Respuestas (1)

zanubah adillah rahmah
zanubah adillah rahmah el 3 de Jun. de 2023
method crank nicolson delT/delt = k*del^2T/delx^2
Heat conduction in an aluminum rod long flat,
stem length L=10cm, delta x = 1 cm
time step, delta t = 0.1s
coefficient diffusion thermal, k = 0.835 cm^2/s
boundary conditions: T(x=0,t)= 100 celcius and T(x=20,t)=50 celcius
initial value: T(x,t=0)= 0 celcius

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by