Can someone help with this?

1 visualización (últimos 30 días)
Victor
Victor el 17 de Dic. de 2013
Respondida: Walter Roberson el 17 de Dic. de 2013
Hi I need help plotting the resopnse to this differential equation with 10^4 points. thanks if you can help.
!x!+ cx! + kx + εx3 = Bcost
0 c ≤ 0.5, 1 k ≤1, 0 ≤ ε ≤1, B = 8.5 ignore the exclamation points.
  3 comentarios
Victor
Victor el 17 de Dic. de 2013
the form you wrote it in is correct it is ε*x^3.
Walter Roberson
Walter Roberson el 17 de Dic. de 2013
Is it correct then that the equation is
(1 + c + k) * x + ε*x^3 = B*cost
? If so then what do you mean by "response"? This is not an differential equation.

Iniciar sesión para comentar.

Respuesta aceptada

Walter Roberson
Walter Roberson el 17 de Dic. de 2013
The equation
(1 + c + k) * x + ε*x^3 = B*cost
can be solved using roots()
roots([epsilon, 0, (1 + c + k), -B*cost])
You then have a plot with three independent variables, c, k, epsilon, together with 3 results per location; 0, 1, or 3 of the results will be real-valued. Plotting this will require a 4 dimensional plot: 3 axes plus 1 result. You need to decide how you want to represent the 4th dimension: options include "color", "marker size", and "transparency".
On the other hand, (c+k) is linear, and the only information that it gives beyond the range (min(c)+min(k)) to (max(c)+max(k)) is in the density of the points. So you might as well drop down a dimension in the plotting
N = 100;
[EPSILON, CK1] = ndgrid(linspace(0,1,N), linspace(1 + 0 + -1, 1 + 1/2 + 1, N));
X = roots([EPSILON, 0, CK1, -B*cost]);
surf(EPSILON, CK1, X(:,:,1)); same for (:,:,2) and (:,:,3) for the three different X values
or something similar (I have not checked the exact dimensions that X will come out as)

Más respuestas (0)

Categorías

Más información sobre Stability Analysis en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by