ABout LVQ neural network in matlab
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Md
el 20 de En. de 2014
Comentada: Walter Roberson
el 9 de Mzo. de 2014
I'm using a Learning Vector Quantization network (LVQ) to classify data collected for deep brain stimulation.
The training data set size is 70X69 and target size 2X68.
my code body is : net = newlvq(minmax(ptr),10,[.5 .5]);
net.trainParam.epochs=50;
net = train(net,ptr, ttr);
trout = sim(net,ptr); perftrain = perform(net,trout,ttr); etrain=ttr-trout; msetrain= mse(etrain);
Now the problem is , I could not get accuracy error more than 60% . I am using 100 repeated 10 fold cross validation. Also, Is there anything wrong with the code?
How do you know how many neurons to use in the competitive layer?
How many epochs should you use?
How do you know that the LVQ is trained well? Please respond. I need it urgently. Thanks
Respuesta aceptada
Greg Heath
el 27 de En. de 2014
Editada: Greg Heath
el 28 de En. de 2014
> I'm using a Learning Vector Quantization network (LVQ) to classify data collected for deep brain stimulation.
Why are you using LVQ instead of a universal approximator (e.g., patternnet or newpr?)
> The training data set size is 70X69 and target size 2X68. my code body is :
70X69? Did you investigate input dimensionality reduction?
>net = newlvq(minmax(ptr),10,[.5 .5]);
>net.trainParam.epochs=50;
newlvq is doubly obsolete. What NNTBX version do you have? What is the reason for overwriting the defaults of numhidden = 20 and maxepochs = 1000?
>net = train(net,ptr, ttr);
>trout = sim(net,ptr);
>perftrain = perform(net,trout,ttr);
>etrain=ttr-trout;
>msetrain= mse(etrain);
Isn't msetrain == perftrain?
> Now the problem is , I could not get accuracy error more than 60% .
How did you calculate "accuracy error???
> I am using 100 repeated 10 fold cross validation. Also, Is there anything wrong with the code?
The choice of parameter values may be the problem.
>How do you know how many neurons to use in the competitive layer? > How many epochs should you use?
Trial and error after using defaults.
>How do you know that the LVQ is trained well?
Low error rates on nontraining data.
0 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Deep Learning Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!