How to use kmeans clustering for face images present in database using eigenfaces features in matlab?

3 visualizaciones (últimos 30 días)
My code uses eigenfaces features to recognize faces.Iam having 20 images in my database.I have to make 3 clusters.Iam using kmeans clustering method.This code can calculate maximum and minimum eucledian distance for each input image taken from database using weight vector.Using this feature i have to make cluster.In matlab software kmeans command is available IDX=kmeans(data,k).I took minimum euclidean distance as 'data' and k=3.It is making minimum euclidean distance of input image as 3 clusters.But i have to cluster 20 face images from database as 3 clusters.How it can be done.What input parameter has to be given for kmeans command.Guide me.
% Face recognition
clear all
close all
clc
% number of images on your training set.
M=20;
%Chosen std and mean.
%It can be any number that it is close to the std and mean of most of the images.
um=100;
ustd=80;
%read and show images(bmp);
S=[]; %img matrix
figure(1);
for i=1:M
str=strcat(int2str(i),'.jpg'); %concatenates two strings that form the name of the image
eval('img=imread(str);');
subplot(ceil(sqrt(M)),ceil(sqrt(M)),i)
imshow(img)
if i==3
title('Training set','fontsize',18)
end
drawnow;
[irow icol d]=size(img); % get the number of rows (N1) and columns (N2)
temp=reshape(permute(img,[2,1,3]),[irow*icol,d]); %creates a (N1*N2)x1 matrix
S=[S temp]; %X is a N1*N2xM matrix after finishing the sequence
%this is our S
end
%Here we change the mean and std of all images. We normalize all images.
%This is done to reduce the error due to lighting conditions.
for i=1:size(S,2)
temp=double(S(:,i));
m=mean(temp);
st=std(temp);
S(:,i)=(temp-m)*ustd/st+um;
end
%show normalized images
figure(2);
for i=1:M
str=strcat(int2str(i),'.jpg');
img=reshape(S(:,i),icol,irow);
img=img';
% eval('imwrite(img,str)');
subplot(ceil(sqrt(M)),ceil(sqrt(M)),i)
imshow(img)
drawnow;
if i==3
title('Normalized Training Set','fontsize',18)
end
end
%mean image;
m=mean(S,2); %obtains the mean of each row instead of each column
tmimg=uint8(m); %converts to unsigned 8-bit integer. Values range from 0 to 255
img=reshape(tmimg,icol,irow); %takes the N1*N2x1 vector and creates a N2xN1 matrix
img=img'; %creates a N1xN2 matrix by transposing the image.
figure(3);
imshow(img);
title('Mean Image','fontsize',18)
% Change image for manipulation
dbx=[]; % A matrix
for i=1:M
temp=double(S(:,i));
dbx=[dbx temp];
end
%Covariance matrix C=A'A, L=AA'
A=dbx';
L=A*A';
% vv are the eigenvector for L
% dd are the eigenvalue for both L=dbx'*dbx and C=dbx*dbx';
[vv dd]=eig(L);
% Sort and eliminate those whose eigenvalue is zero
v=[];
d=[];
for i=1:size(vv,2)
if(dd(i,i)>1e-4)
v=[v vv(:,i)];
d=[d dd(i,i)];
end
end
%sort, will return an ascending sequence
[B index]=sort(d);
ind=zeros(size(index));
dtemp=zeros(size(index));
vtemp=zeros(size(v));
len=length(index);
for i=1:len
dtemp(i)=B(len+1-i);
ind(i)=len+1-index(i);
vtemp(:,ind(i))=v(:,i);
end
d=dtemp;
v=vtemp;
%Normalization of eigenvectors
for i=1:size(v,2) %access each column
kk=v(:,i);
temp=sqrt(sum(kk.^2));
v(:,i)=v(:,i)./temp;
end
%Eigenvectors of C matrix
u=[];
for i=1:size(v,2)
temp=sqrt(d(i));
u=[u (dbx*v(:,i))./temp];
end
%Normalization of eigenvectors
for i=1:size(u,2)
kk=u(:,i);
temp=sqrt(sum(kk.^2));
u(:,i)=u(:,i)./temp;
end
% show eigenfaces;
figure(4);
for i=1:size(u,2)
img=reshape(u(:,i),icol,irow);
img=img';
img=histeq(img,255);
subplot(ceil(sqrt(M)),ceil(sqrt(M)),i)
imshow(img)
drawnow;
if i==3
title('Eigenfaces','fontsize',18)
end
end
% Find the weight of each face in the training set.
omega = [];
for h=1:size(dbx,2)
WW=[];
for i=1:size(u,2)
t = u(:,i)';
WeightOfImage = dot(t,dbx(:,h)');
WW = [WW; WeightOfImage];
end
omega = [omega WW];
end
% Acquire new image
% Note: the input image must have a bmp or jpg extension.
% It should have the same size as the ones in your training set.
% It should be placed on your desktop
ed_min=[];
for k=0:3
InputImage = input('Please enter the name of the image and its extension \n','s');
InputImage = imread(strcat('F:\input image\',InputImage));
figure(5)
subplot(1,2,1)
imshow(InputImage); colormap('gray');title('Input image','fontsize',18)
%InImage=reshape(double(InputImage),irow*icol,1);
InImage=reshape(permute((double(InputImage)),[2,1,3]),[irow*icol,1]);
temp=InImage;
me=mean(temp);
st=std(temp);
temp=(temp-me)*ustd/st+um;
NormImage = temp;
Difference = temp-m;
p = [];
aa=size(u,2);
for i = 1:aa
pare = dot(NormImage,u(:,i));
p = [p; pare];
end
%ReshapedImage = m + u(:,1:aa)*p; %m is the mean image, u is the eigenvector
%ReshapedImage = reshape(ReshapedImage,icol,irow);
%ReshapedImage = ReshapedImage';
%show the reconstructed image.
%subplot(1,2,2)
%imagesc(ReshapedImage); colormap('gray');
%title('Reconstructed image','fontsize',18)
InImWeight = [];
for i=1:size(u,2)
t = u(:,i)';
WeightOfInputImage = dot(t,Difference');
InImWeight = [InImWeight; WeightOfInputImage];
end
%ll = 1:M;
%figure(68)
%subplot(1,2,1)
%stem(ll,InImWeight)
%title('Weight of Input Face','fontsize',14)
% Find Euclidean distance
e=[];
for i=1:size(omega,2)
q = omega(:,i);
DiffWeight = InImWeight-q;
mag = norm(DiffWeight);
e = [e mag];
end
%kk = 1:size(e,2);
%subplot(1,2,2)
%stem(kk,e)
%title('Eucledian distance of input image','fontsize',14)
format long
MaximumValue=max(e)
MinimumValue=min(e)
ed_min=[ed_min MinimumValue];
theta=3.593489431882765e+04;
%disp(e)
if(MinimumValue<=theta)
fprintf('recognized face\n');
else
fprintf('unrecognized face\n');
end
end
disp(ed_min);
[IDX,C] = kmeans(ed_min,3)

Respuestas (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by