image compression using FFT

16 visualizaciones (últimos 30 días)
Jitesh Bhanushali
Jitesh Bhanushali el 3 de Abr. de 2014
Comentada: Sulaymon Eshkabilov el 15 de Nov. de 2023
Sir how can we compress image using FFT transform..RLE coding is not suitable with the FFT..what coding technique is suitable for FFT to compress the image..

Respuestas (2)

Walter Roberson
Walter Roberson el 3 de Abr. de 2014
RLE is a lossless compression technique. Compression with FFT is a lossy compression technique. You do the FFT, and you throw away some of the coefficients and output the rest; then for reconstruction you let the missing coefficients be 0 and do the inverse FFT.
Which coefficients you should throw away is something for you to explore.

sam k
sam k el 6 de Jun. de 2020
a=imread('link.jpeg');
grayIm =rgb2gray(a);
[row col] = size(grayIm);
subplot(2, 2, 1);
imshow(grayIm);
title('original image')
A=fft2(grayIm); %2D fft
count_pic=2;
for thresh=0.1*[0.001 0.005 0.006]*max(max(abs(A)))
ind=abs(A)>thresh;
count=row*col-sum(sum(ind));
Alow=A.*ind;
per=100-count/(row*col)*100;
Blow=uint8(ifft2(Alow));
subplot(2,2,count_pic);
imshow(Blow);
count_pic=count_pic+1;
title([num2str(per) '% of fft basis'])
end
  2 comentarios
Thinh
Thinh el 26 de Oct. de 2022
can you explain this, please
Sulaymon Eshkabilov
Sulaymon Eshkabilov el 15 de Nov. de 2023
This means what % of the highest FFT coeffcients to keep.
It can be also applied for color (RGB) images as well:
A = imread('A1.jpeg');
Afft=fft2(A);
Asort = sort(abs(Afft(:)));
counter=0;
for Keep = [.95 .1 .05 .001]
threshold = Asort(floor((1-Keep)*length(Asort)));
Ind = abs(Afft)>threshold;
Atlow = Afft.*Ind;
Alow = uint8(ifft2(Atlow));
s = whos('Alow');
totSize = s.bytes;
counter=counter+1;
figure(counter)
imshow(Alow)
saveas(gcf, strcat(['FFT_IMG', num2str(counter) '.jpeg']))
s = dir(strcat(['FFT_IMG', num2str(counter) '.jpeg']));
filesize(counter)=s.bytes
title([num2str(Keep) '% of fft basis is kept and updated image file size is: ' num2str(s.bytes)])
end

Iniciar sesión para comentar.

Categorías

Más información sobre Denoising and Compression en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by