- Set the values of the parameters in your model to those passed in from your optimizer
- Call your simulation using the "sim" command
- Calculate the error by subtracting the output of your simulation from your "observed output" (perhaps the absolute or root-mean-squared error?)
optimisation of simulink parameters
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
mehsa
el 17 de Mayo de 2014
*i need to optimise two parameters in a simulink model using least square curve fitting(lsqcurvefit) solver of optimization toolbox.for that i should write the objective function.My aim is to minimise the error b/w observed output and output obtained from simulation through simulink for optimising the parameters in simulink.The parameters in the simulink model which i need to optimise is x and k.x value range-0.1-0.4. k value range-20-40.
how can i write my objective function for this in a m-file?Also can i use optimization toolbox for solving this problem?plz help somebody!!*
0 comentarios
Respuesta aceptada
A Jenkins
el 19 de Mayo de 2014
Editada: A Jenkins
el 19 de Mayo de 2014
Your objective function should probably
0 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Nonlinear Least Squares (Curve Fitting) en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!