What does MU in trainbr actually mean and can I EEG matrix data as inputs?
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I am new to using ANNs practically so please be patient! I have two main questions 1. what does MU actually mean in the trainbr function? I have looked at documentation but the math is above my level of understanding.
2. I have matrices of EEG data. Each column is an ERP, or waveform that I want the network to learn. I am using patternnet. Can I do this? Meaning is the net 'understanding' that my columns are my units?
Thanks in advance very much!
Kim
0 comentarios
Respuesta aceptada
Greg Heath
el 13 de En. de 2016
Editada: Greg Heath
el 13 de En. de 2016
Before you post a question
1. Use the MATLAB commands
lookfor, help, and doc
2. Check out Google and Wikipedia
3. For source code use the MATLAB command type
type trainbr
>>lookfor trainbr
>> help trainbr
... Levenberg-Marquardt optimization.
... Bayesian Regularization
... mu 0.005 Marquardt adjustment parameter
mu_dec 0.1 Decrease factor for mu
mu_inc 10 Increase factor for mu
mu_max 1e10 Maximum value for mu
>> doc trainbr
... LIMITATIONS ...
... MORE ABOUT ... expand all
... Algorithms ...
... References ...
4. FINALLY: GOOGLE LEVENBERG-MARQUARDT
All inputs and target outputs in the NN Toolbox are column vectors
If you are classifying waveforms into c classes, the target columns should be {0,1} unit vector columns of eye(c). However, PATTERNNET is the go to classification algorithm with the default TRAINSCG.
So why are you considering TRAINBR?
Hope this helps.
Thank you for formally accepting my answer
Greg
Más respuestas (0)
Ver también
Categorías
Más información sobre Solver Outputs and Iterative Display en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!