How can I find the Y value on an X–Y plot that corresponds to the tangent of the flattest part of a curve?
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Srh Fwl
el 22 de Ag. de 2021
Comentada: Srh Fwl
el 24 de Ag. de 2021
I have plots like the one attached. At Y >0, the curve plateaus (flattens) before it increases sharply. I need to find the Y value at which the plateau/flat area is flattest.
Does anyone know how to do this? I can't figure out a solution that gets the part of the curve that I want. Thank you.
8 comentarios
Adam Danz
el 23 de Ag. de 2021
@Srh Fwl, looks like Star Strider demonstrated that idea in a comment below the answer. Notice that the dip in the red curve is at the location I think you're refering to. If you need additional specific help, you may want to clarify the foggy areas pointed out by dpb.
Respuesta aceptada
Star Strider
el 22 de Ag. de 2021
T1 = readtable('https://www.mathworks.com/matlabcentral/answers/uploaded_files/718334/exampleData.txt')
T1 = rmmissing(T1); % Remove 'NaN' Values
h = mean(diff(T1.Var1))
d2d1 = gradient(T1.Var2, h); % Numerical Derivative
flatidx = find(abs(d2d1)<1E-14); % Zero Slope (With Tolerance)
yflat = T1.Var2(flatidx)
figure
plot(T1.Var1, T1.Var2)
hold on
plot(T1.Var1(flatidx), T1.Var2(flatidx), 'vr')
hold off
grid
legend('Data','Flat Section', 'Location','best')
This should also work with other data sets, although obviously I cannot test it with them.
.
2 comentarios
Star Strider
el 23 de Ag. de 2021
Set the conditions in the find call to match what you want to define.
T1 = readtable('https://www.mathworks.com/matlabcentral/answers/uploaded_files/718334/exampleData.txt')
T1 = rmmissing(T1); % Remove 'NaN' Values
h = mean(diff(T1.Var1))
d2d1 = gradient(T1.Var2, h); % Numerical Derivative
flatidx = find((abs(d2d1)<1.0) & (T1.Var2 > 0)); % Define Slope Criteria (With Tolerance)
yflat = T1.Var2(flatidx)
figure
plot(T1.Var1, T1.Var2)
hold on
plot(T1.Var1, d2d1)
plot(T1.Var1(flatidx), T1.Var2(flatidx), '.r')
hold off
grid
legend('Data', 'Numeircal Derivative', 'Flat Section', 'Location','best')
Make appropriate changes to get the result you want.
.
Más respuestas (1)
Turlough Hughes
el 23 de Ag. de 2021
Editada: Turlough Hughes
el 23 de Ag. de 2021
How robust this is depends on the consistency of that initial pattern, i.e. the initial acceleration followed by a period of deceleration (starting to plateau) until the "flattest" point where it then begins to accelerate again. This point between the initial deceleration and acceleration is also known as an inflection point, as mentioned by @dpb. It's also the point where where y is closest to being parallel to the x-axis in the region (where it is initially plateauing).
To find the inflection point we find the location where . I understand you want the second one as follows:
T = readmatrix('https://www.mathworks.com/matlabcentral/answers/uploaded_files/718334/exampleData.txt');
x = T(:,1);
y = T(:,2);
subplot(2,1,1)
plot(x,y,'LineWidth',3)
ylabel('f(x)'), xlabel('x')
set(gca,'fontSize',12)
subplot(2,1,2)
ypp = gradient(gradient(y,x),x); % second derivative of y w.r.t. x
plot(x,ypp,'LineWidth',3);
ylabel('f''''(x)')
xlabel('x')
set(gca,'fontSize',12)
idx = ypp > 0;
hold on, plot(x(idx),ypp(idx),'or','LineWidth',2)
iFlat = find(diff(idx)==1)+1; % y is most linear when it's second derivate, ypp, is equal to 0
iInflect = iFlat(2); % the second time ypp becomes > 0 approximates the second inflection point.
plot(x(iInflect),ypp(iInflect),'sk','MarkerSize',10,'LineWidth',2)
subplot(2,1,1)
hold on, plot(x(iInflect),y(iInflect),'sk','MarkerSize',10,'LineWidth',2)
x(1:iInflect-1) = [];
y(1:iInflect-1) = [];
plot(x,y,'--r','LineWidth',2)
legend('Original Dataset','Second Inflection Point','New Dataset','Location','NorthWest')
Ver también
Categorías
Más información sobre Data Preprocessing en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!