To get dominant eigen vector

67 visualizaciones (últimos 30 días)
Pannir Selvam Elamvazhuthi
Pannir Selvam Elamvazhuthi el 28 de Ag. de 2011
Comentada: Savas Erdim el 6 de Abr. de 2021
In Matlab/Octave, [A B] = eig(C) returns a matrix of eigen vectors and a diagonal matrix of eigen values of C. Even though the values may be theoretically real, these are given to be complex with very low imaginary values. Due to this, the eigen values are not put in a decreasing order. Hence to find the eigen vectors corresponding to dominant eigen values, some calculations are required, which take up processing time in a big loop. Is there a remedy to this to find dominant eigen vectors?
  3 comentarios
Pannir Selvam Elamvazhuthi
Pannir Selvam Elamvazhuthi el 29 de Ag. de 2011
I agree Bjorn. Thanks.
Pannir Selvam Elamvazhuthi
Pannir Selvam Elamvazhuthi el 29 de Ag. de 2011
But Chen's answer seems to be faster as directly I'd get the eigen value and the corresponding vector too.

Iniciar sesión para comentar.

Respuesta aceptada

Chaowei Chen
Chaowei Chen el 28 de Ag. de 2011
[U,S,V]=svd(C) gives you the singular value decomposition of C. i.e., C=U*S*V'
where the singular values S are in decreasing order. Therefore, the most dominant eigenvector is U(:,1), for example.
  2 comentarios
Pannir Selvam Elamvazhuthi
Pannir Selvam Elamvazhuthi el 29 de Ag. de 2011
Thanks Chen.
Illya
Illya el 14 de Jul. de 2014
Almost correct: SVD is works fine only for PSD case.
If C is not PSD, there is no way to use SVD to get eigenvectors. Even using svd(C*C) ou svd(C*C') will not produce correct eigenvectors. Try, for example,
C=[0 1 1;0 1 1;1 0 0];
first with eigs()
[V,D]=eigs(C);
lambda=D(1,1), v=V(:,1),
C*v-lambda*v
% lambda =
%
% 1.6180
%
%
% v =
%
% -0.6479
% -0.6479
% -0.4004
%
%
% ans =
%
% 1.0e-015 *
%
% 0.2220
% 0
% 0.4441
And then with svd():
[U,S,V]=svd(C); v=U(:,1)
C*v-lambda*v
% v =
%
% -0.7071
% -0.7071
% 0
%ans =
%
% 0.4370
% 0.4370
% -0.7071
or, even using squared a argument:
[U,S,V]=svd(C*C); v=U(:,1)
lambda=sqrt(S(1,1))
C*v-lambda*v
% v =
%
% -0.6280
% -0.6280
% -0.4597
%
%
% lambda =
%
% 1.6529
%
%
% ans =
%
% -0.0497
% -0.0497
% 0.1319
The squared version is much closer, but still far away from the right answer. The 'pseudo PSD' version (svd(C*C')) would produce the same U vectors as svd(C), which *is the eigenvector of C*C' but not an igenvector of C*.
However, all the above code would produce correct results for some PSD matrix, e.g. C1=C*C'.

Iniciar sesión para comentar.

Más respuestas (2)

Riley Manfull
Riley Manfull el 9 de Feb. de 2018
[A,B]=eigs(C,1)
  1 comentario
Savas Erdim
Savas Erdim el 6 de Abr. de 2021
That worked very well. Thank you Riley!

Iniciar sesión para comentar.


Christine Tobler
Christine Tobler el 12 de Mayo de 2017
I realize this is an old post, but this might be helpful to others:
One reason for EIG to return complex values with very small imaginary part, could be that A is very close to, but not exactly, symmetric. In this case,
[U, D] = eig( ( A + A')/2 );
will make EIG treat the input as symmetric, and always return real eigenvalues.

Categorías

Más información sobre Linear Algebra en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by