Highlight a specific part within an image

7 visualizaciones (últimos 30 días)
Mariam Ramzi
Mariam Ramzi el 22 de Oct. de 2021
Comentada: Image Analyst el 24 de Oct. de 2021
I would like to ask how to read a picture, and then distinguish if there is something inside this picture from another picture is also included.
Depending on the attached images , I would like, for example, to insert image 1 and then identify and define the non-smooth part based on an image containing a non-smooth part, I will include it.
The goal is to highlight areas of an image that are rough and smooth in nature.
Knowing that the images of the original sample will differ each time, and the system has to distinguish that area due to the same image of the part.
I hope I was able to convey the idea and I hope to find an answer.
thanks
  2 comentarios
DGM
DGM el 23 de Oct. de 2021
Editada: DGM el 23 de Oct. de 2021
Define "something inside this picture [say picture A] from another picture [B] is also included".
Does that mean that picture B is a subset of A, or does that merely mean that some feature of B is similar to some feature in A? If the latter, what defines "similar"?
If the goal is simply to find the location of textured regions of A, what is the purpose of using B?
Mariam Ramzi
Mariam Ramzi el 23 de Oct. de 2021
Editada: Mariam Ramzi el 23 de Oct. de 2021
thank you for your comment
Yes the idea is to find specific areas in A (areas of a rough nature) I used B because I could not find another alternative and I thought this is the easiest way, I hope to find a more effective way

Iniciar sesión para comentar.

Respuesta aceptada

Image Analyst
Image Analyst el 23 de Oct. de 2021
Try something like stdfilt() or entropyfilt() to identify the rough region.
  4 comentarios
Mariam Ramzi
Mariam Ramzi el 24 de Oct. de 2021
Thank you very much for the answer
I appreciate that
But I have a question about the " mask", what exactly does it do, here was my mistake in my previous code
Image Analyst
Image Analyst el 24 de Oct. de 2021
@Mariam Ramzi, I did not see your previous code because you did not attach it. In my code, mask is a binary image gotten by thresholding the standard deviation image. The resulting image is true wherever there is high standard deviation (meaning the image is rough there), and false where there is low standard deviation (meaning the image is smooth there). I can analyze your code for the problem but you'd have to attach it.

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Image Processing Toolbox en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by