How to understand the K matrix and the noisevariance of a state space model
11 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
My goal is to execute the Kalman filter using the raw measured temperature values. Since the system model, the measurement noise ( R ) and the system noise ( Q ) are unkown, I want to firstly use pem (prediction-error minimization method) to find a suitable state space model ( m ) for it. However, I'm confused about the estimated K matrix of pem and the noisevariance. Before I think that
R = m.noisevariance;
Q = m.K^2 * R.
But when I refer one example in matlab toolbox: Estimating a Discrete-Time Grey-Box Model with Parameterized Disturbance (the related codes are shown below), it seems that the K matrix is actually the Kalman gain. If it is, what is the noisevariance returned by pem? How can I know R and Q then?
%*************************************************************************************************************%
function [A,B,C,D,K,x0] = mynoise(par,T,aux)
R2 = aux(1); % Known measurement noise variance
A = [par(1) par(2);1 0];
B = [1;0];
C = [par(3) par(4)];
D = 0;
R1 = [par(5) 0;0 0];
[est,K] = kalman(ss(A,eye(2),C,0,T),R1,R2);
x0 = [0;0];
2. Specify initial guesses for the unknown parameter values and the auxiliary parameter value R2:
par1 = 0.1; % Initial guess for A(1,1)
par2 = -2; % Initial guess for A(1,2)
par3 = 1; % Initial guess for C(1,1)
par4 = 3; % Initial guess for C(1,2)
par5 = 0.2; % Initial guess for R1(1,1)
Pvec = [par1; par2; par3; par4; par5]
auxVal = 1; % R2=1
3. Construct an idgrey model using the mynoise file:
Minit = idgrey('mynoise',Pvec,'d',auxVal);
4.Estimate the model parameter values from data:
Model = pem(data,Minit)
%****************************************************%
1 comentario
Respuesta aceptada
huang
el 9 de Oct. de 2014
Editada: huang
el 10 de Mzo. de 2015
2 comentarios
Parth Sharma
el 10 de En. de 2018
Hi, I am having trouble with simulating SS model with K matrix in simulink. Do you think you can help me?
Regards, Parth
Más respuestas (0)
Ver también
Categorías
Más información sobre Nonlinear Systems en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!