How to predict housing price using Neural Network Toolbox?

4 visualizaciones (últimos 30 días)
WT
WT el 10 de Oct. de 2014
Editada: WT el 10 de Oct. de 2014
I would like to predict housing prices using inputs such as distance away from subway, numbers of rooms etc.. which of the 4 wizards ( fitting tool, pattern recognition tool, clustering tool, time series tool) should i use?
Thank You WT Lim

Respuesta aceptada

Greg Heath
Greg Heath el 10 de Oct. de 2014
Use the fitting tool with fitnet
Also, see
help house_dataset
doc house_dataset
help fitnet
doc fitnet
[ x,t ] = house_dataset;
[ I N ] = size(x) % [ 13 506 ]
[ O N ] = size(t) % [ 1 506 ]
MSE00 = mean(var(t',1)) % 84.42
net = fitnet;
rng('default')
[net tr y e ] = train(net,x,t); % e=t-y
NMSE = mse(e)/MSE00 % normalized MSE = 0.071101
R2 = 1-NMSE % Rsquare (See Wikipedia) = 0.9289
% ~ 93% of the target variance is modeled by the net. % Obtain details from the training record
tr = tr
Hope this helps
Thank you for formally accepting my answer
Greg
  2 comentarios
Greg Heath
Greg Heath el 10 de Oct. de 2014
Better solutions probably can be obtained by using
1. A different number of hidden nodes
2. A different set of random initial weigts
WT
WT el 10 de Oct. de 2014
Editada: WT el 10 de Oct. de 2014
Thank you for replying. Can i still use fitting tool with fitnet when the inputs are dependent on time?

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Sequence and Numeric Feature Data Workflows en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by