How could I remove outliers in really small data?
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Juan Manuel Hussein Belda
el 20 de Nov. de 2021
Comentada: Sulaymon Eshkabilov
el 22 de Nov. de 2021
I have data that should resemble a parabola when plotted into a figure. However, near the center, there is a "high" value for the data.
x = [-9.0000 -8.0000 -7.0000 -6.0000 -5.0000 -4.0000 -3.0000 -2.0000 -1.0000 0 1.0000 ...
2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 10.0000];
y = [0.0173 0.0169 0.0168 0.0166 0.0166 0.0167 0.0165 0.0165 0.0166 0.0167 0.0168 ...
0.0177 0.0189 0.0173 0.0176 0.0178 0.0180 0.0181 0.0182 0.0185];
The values I would like Matlab to see as an outlier are x = 2 --> y = 0.0177, and x = 3, --> y = 0.0189, because I should not expected the parabola to grow in the middle, and then decrease. However, it does not count this points as outliers because, of course, Matlab does not know that I should be expecting a parabola-like shape. How could I do this? Thank you!
6 comentarios
John D'Errico
el 20 de Nov. de 2021
What DPB has suggested is a variation of often called an iteratively reweighted least squares. It is the basis for many of the robust fitting tools you will find. Points with large residuals are downweighted, then a weighted fit is redone. In the case of an outlier scheme, you can just decide to just remove them if you wish.
Respuesta aceptada
Sulaymon Eshkabilov
el 21 de Nov. de 2021
Linear interpolation might be good to use here, e.g.:
x = [-9.0000 -8.0000 -7.0000 -6.0000 -5.0000 -4.0000 -3.0000 -2.0000 -1.0000 0 1.0000 ...
2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 10.0000];
y = [0.0173 0.0169 0.0168 0.0166 0.0166 0.0167 0.0165 0.0165 0.0166 0.0167 0.0168 ...
0.0177 0.0189 0.0173 0.0176 0.0178 0.0180 0.0181 0.0182 0.0185];
plot(x,y, 'linewidth', 2), shg
% Linear Interpolation
x1 = 2; y1 = 0.0177;
x2 = 3; y2 = 0.0189;
Idx = find(x==x1 | x==x2);
y(Idx) = interp1([x(Idx(1)-1),x(Idx(2)+1)], [y(Idx(1)-1),y(Idx(2)+1)], x(Idx));
hold on
plot(x, y, 'r--', 'linewidth', 2), grid on; legend('Raw: x vs. y', 'Fixed: x vs. y')
2 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Fit Postprocessing en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!