Multiple plot on same graph
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hmm!
el 3 de Dic. de 2021
Comentada: Walter Roberson
el 3 de Dic. de 2021
I would like to have these 4 plots on the same graph sheet for easy comparison. Plotting the individual plot works but I am not sure what is the reason why all the 4 plots cannot be plotted at the same time. Relying on benevolent members for assitance.
rng default
n = 30;
% generate the A matrix
D = delsq(numgrid('L',n)); %same as matrix A
bGrid = ones(length(D),1); %same as RHS b vector
M = diag(diag(D));
tol = 1e-8;
maxit = 100;
P = inv(M);
L = ichol(M);
Q = ichol(M,struct('michol','on'));
% pcg
[x0,f0,r0,it0,rv0] = pcg(D,bGrid); %no precond
[x1,f1,r1,it1,rv1] = pcg(D,bGrid,tol,maxit,P); % inv
[x2,f2,r2,it2,rv2] = pcg(D,bGrid,tol,maxit,L,L'); % ichol
[x3,f3,r3,it3,rv3] = pcg(D,bGrid,tol,maxit,Q,Q'); % modified ichol
% plots on same graph
semilogy(0:length(rv0)-1,rv0/norm(bGrid),'-o')
hold on
semilogy(0:length(rv1)-1,rv1/norm(bGrid),'-o')
semilogy(0:length(rv2)-1,rv2/norm(bGrid),'-o')
semilogy(0:length(rv3)-1,rv3/norm(bGrid),'-o')
yline(tol,'r--');
legend('No Preconditioner', 'inv(M)', 'ichol(M)', 'michol(M)', 'Tolerance', 'Location','southwest')
title('Conjugant Gredient Algorithm');
legend('boxoff')
0 comentarios
Respuesta aceptada
Walter Roberson
el 3 de Dic. de 2021
rng default
n = 30;
% generate the A matrix
D = delsq(numgrid('L',n)); %same as matrix A
bGrid = ones(length(D),1); %same as RHS b vector
M = diag(diag(D));
tol = 1e-8;
maxit = 100;
P = inv(M);
L = ichol(M);
Q = ichol(M,struct('michol','on'));
% pcg
[x0,f0,r0,it0,rv0] = pcg(D,bGrid); %no precond
[x1,f1,r1,it1,rv1] = pcg(D,bGrid,tol,maxit,P); % inv
[x2,f2,r2,it2,rv2] = pcg(D,bGrid,tol,maxit,L,L'); % ichol
[x3,f3,r3,it3,rv3] = pcg(D,bGrid,tol,maxit,Q,Q'); % modified ichol
% plots on same graph
semilogy(0:length(rv0)-1,rv0/norm(bGrid),'-or')
hold on
semilogy(0:length(rv1)-1,rv1/norm(bGrid),'--.g')
semilogy(0:length(rv2)-1,rv2/norm(bGrid),':^b')
semilogy(0:length(rv3)-1,rv3/norm(bGrid),'+k')
yline(tol,'r--');
legend('No Preconditioner', 'inv(M)', 'ichol(M)', 'michol(M)', 'Tolerance', 'Location','southwest')
title('Conjugant Gredient Algorithm');
legend('boxoff')
min(rv0),max(rv0)
min(rv1),max(rv1)
min(rv2),max(rv2)
min(rv3),max(rv3)
You are asking to solve the same system of linear equations with different preconditioners, but you are expecting that the differences between the results will be visible on the plot.
There is a notable difference on the first point of rv0 versus the remainder, but on the scale of the plot you cannot tell by the plot.
4 comentarios
Walter Roberson
el 3 de Dic. de 2021
M = diag(diag(D));
That is a sparse diagonal matrix whose diagonal is the constant 4.
L = ichol(M);
That is a sparse diagonal matrix whose diagonal is the constant 2.
Your arrays are "boring" -- the hints you are providing through the additional parameters are adding essentially no usable new information, so the outputs are all the same (except being different sizes in some cases.)
Más respuestas (0)
Ver también
Categorías
Más información sobre Sparse Matrices en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!