vectorization of comparison against several intervals
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Cristian Berceanu
el 13 de Dic. de 2021
Comentada: Jan
el 13 de Dic. de 2021
Hello,
I currently have the code below, which essentially checks if each element of the MainArray is within any of the intervals described in each row of CompArray; if yes, the corresponding position in ResultsArray is set to 0. In practice, I need to run this on mich bigger matrices and iteratively, so speed of execution becomes a problem. Is there a possibility to vectorize it? Note that CompArray can have a variable number of rows (comparison intervals), but always only two columns.
clc
clearvars
ResultsArray = ones(10,10);
MainArray = magic(10);
CompArray = [ 20 30;...
40 50;...
60 70];
for Row = 1:10
for Col = 1:10
if(any((MainArray(Row,Col) >= CompArray(:,1)) & (MainArray(Row,Col) <= CompArray(:,2))))
ResultsArray(Row,Col) = 0;
end
end
end
Best regards,
Cristian
2 comentarios
Respuesta aceptada
Jan
el 13 de Dic. de 2021
Editada: Jan
el 13 de Dic. de 2021
Easier to run in the forum and maybe faster already:
N = 1000;
M = randi([1, 1000], N, N);
C = sort(randi([1, 1000], 100, 2), 2);
C1 = C(:, 1);
C2 = C(:, 2);
tic
R1 = ones(size(M));
for Row = 1:size(M, 1)
for Col = 1:size(M, 2)
if(any((M(Row,Col) >= C(:,1)) & (M(Row,Col) <= C(:,2))))
R1(Row,Col) = 0;
end
end
end
toc
tic
R2 = ones(size(M));
for k = 1:numel(M)
if any((M(k) >= C1) & (M(k) <= C2))
R2(k) = 0;
end
end
toc
% Alternatively:
tic
R3 = ones(size(M));
for k = 1:numel(M)
R3(k) = all((M(k) < C1) | (M(k) > C2));
end
toc
tic
R4 = true(size(M));
for k = 1:size(C1, 1)
R4(R4 & (M >= C1(k)) & (M <= C2(k))) = false;
end
toc
tic
R5 = true(size(M));
for k = 1:size(C1, 1)
R5 = R5 & (M < C1(k) | M > C2(k));
end
toc
isequal(R1, R2, R3, R4, R5)
% R2018b, Win10, i5 mobil:
% Elapsed time is 0.429244 seconds. original
% Elapsed time is 0.335571 seconds. simplilied
% Elapsed time is 0.351330 seconds. no IF
% Elapsed time is 0.247861 seconds. loop over intervals
% Elapsed time is 0.148806 seconds. loop over intervals 2
2 comentarios
Jan
el 13 de Dic. de 2021
The vectorized version are much slower, therefore I did not copy them. Vectorisation is not efficient, if large intermediate arrays are required, which do not match into the CPU cache.
Más respuestas (0)
Ver también
Categorías
Más información sobre Entering Commands en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!