The pooled covariance matrix of TRAINING must be positive definite.

8 visualizaciones (últimos 30 días)
clc
clear all
load featurs_T
load featurs_S
load Group_Train
load Group_Test
cv_x=cov(Feat1);
[V,D] = eig(cv_x);
d=diag(D);
d=d(end:-1:1);
sm_d=cumsum(d) /sum(d);
idx=find(sm_d>0.99);
T=[V(:,end:-1:idx(1))]';
new_feat1=T*Feat1';
%TrainingSet= new_feat1';
new_feat2=T*Feat2';
%TestSet= new_feat2';
TrainingSet = new_feat1';
TestSet = new_feat2';
Group_Train1 = Group_Train1';
Group_Test1 = Group_Test1';
%------------------------
% result1= multisvm(TrainingSet,Group_Train1,TestSet,Group_Test1);
result1= classify(TestSet,TrainingSet,Group_Train1,'linear');
testresult = result1;
Accuracy = mean(Group_Test1==result) * 100;
fprintf('Accuracy = %.2f\n', Accuracy);
fprintf('error rate = %.2f\n ', mean(result ~= Group_Test1 ) * 100);
Error using classify (line 233)
The pooled covariance matrix of TRAINING must be positive definite.
Error in HOG2 (line 31)
result1= classify(TestSet,TrainingSet,Group_Train1,'linear');
  5 comentarios
sun rise
sun rise el 24 de En. de 2022
I actually used pca to reduce dimensions. But the error is still there
sun rise
sun rise el 29 de En. de 2022
Feat1 = pca(Feat1);
Feat2 = pca (Feat2);
But why is pca decreasing the number of images and thus I get this error
The length of GROUP must equal the number of rows in TRAINING.
This is evident in the workspace

Iniciar sesión para comentar.

Respuesta aceptada

Matt J
Matt J el 23 de En. de 2022
I suggest you calculate the pooled covariance matrix and verify whether the error message is accurate.

Más respuestas (0)

Categorías

Más información sobre Dimensionality Reduction and Feature Extraction en Help Center y File Exchange.

Productos


Versión

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by