I want to find unknown value for nonlinear equation.
    7 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
I want to find t1 value by search method with mesh grid plot between t1 and TC.  Anyone help me to do this problem.
function tcfun()
clc
close all
t1=0:0.5:3;
TC=f(t1);
r0=[0.20;10];
alfa=0.2;
while abs (f(r0(1))) > 1e-2
    r0 = r0 - alfa.*(f(r0(1)))./fprime(r0(1));
end
hold on
r0=[0.1]
alfa=0.2;
for index = 1:100
    r0 = r0 - alfa.*inv(fdb1prime(r0(1)).*fprime(r0(1)));
end
r0
f(r0(1))
plot(r0(1),f(r0(1)),'rs','Markersize',20)
    function TC = f(t1)
        A0 =500;
        D0=100;
        c1=5;
        c2=10;
        c3=10;
        c4=8;
        a=30;
        a2=40;
        m=0.5;
        b=5;
        b2=7;
        mu1=4;
        mu2=8;
        T=12;
        k1=0.01;
        k0=0.03;
        TC=(1./T).*(A0+c1.*((b-a).*t1-(b.*t1^2./2)+(a+b.*(1+m)).*log((1+m-t1)./(1+m)))+c2.*((b.*t1^2./2)+(a+b.*(1+m)).*(t1+(1+m).*log(1+m-t1)))+c3.*((a./k1)-(b.*(1-k1.*T)./k1^2).*(mu1.*(log((1+k1.*(mu1-T))./(1+k1.*(t1-T)))-1)+t1)+((1-k1.*T)./k1).*(log((1+k1.*(mu1-T))./(1+k1.*(t1-T))))+(b.*k0./2.*k1).*(mu1-t1).^2+((a./k1)-(b.*k0.*(1-k1.*T)./k1^2).*(log((1+k1.*(mu1-T))./(1+k1.*(t1-T)))).*(mu2-mu1)+(k0.*D0./k1).*(mu2.*(log((1+k1.*(mu2-T))./(1+k1.*(t1-T)))-1)-mu1.*(log((1+k1.*(mu1-T))./(1+k1.*(t1-T)))-1)+((1-k1.*T)./k1).*(log((1+k1.*(mu2-T))./(1+k1.*(mu1-T))))+((a./k1)-(b.*k0.*(1-k1.*T)./k1^2).*(log((1+k1.*(mu1-T))./(1+k1.*(t1-T)))).*(T-mu2)+(b.*k0./k1).*(mu1-t1).*(T-mu2)+(k0.*D0./k1).*(log((1+k1.*(mu2-T))./(1+k1.*(mu1-T)))).*(T-mu2)-(k0.*b2./2.*k1).*(mu2-T).^2+((1./k1)-T)+(T-(1./k1)).*(T.*(log(1+k1(t1-T))-1)-mu2.*(log((1+k1.*(mu2-T))./(1+k1.*(t1-T)))-1))+(T-(1./k1)).*log(1+k1.*(mu2-T))))+c4.*(a.*(mu1-t1)+(b2./2).*(mu1.^2-t1.^2)-k0.*(a./k1)-(b.*(1-k1.*T)./k1^2).*(log((1+k1.*(mu1-T))./(1+k1.*(t1-T))))+(b./k1).*(mu1-t1))+D0.*(mu2-mu1)-(D0.*k0./k1).*(log((1+k1.*(mu2-T))./(1+k1.*(mu1-T))))+(1./2.*b2).*((a2-b2.*mu2).^2-(a2-b2.*T).^2)+k0.*a2.*log(1+k1.*(mu2-T))-(b2./k1).*(T-mu2)+(b2./k1).*(T-(1./k1)).*log(1+k1.*(mu2-T)))));
        function TCprime = fprime(t1)
            dfdt1=(1./T).*(c1.*((b-a)-b.*t1-((a+b.*(1+m))./(1+m-t1)))+c2.*(b.*t1-((a+b.*(1+m).*t1)./(1+m-t1)))+c3.*((a./k1)-(b.*(1-k1.*T)./k1^2).*(((-mu1.*k1)./(1+k1.*(t1-T)))+1)-((1-k1.*T)./(1+k1.*(t1-T)))+((b.*k0.*(t1-mu1))./k1)-((a-b.*k0.*(1-k1.*T))./k1).*((mu2-mu1)./(1+k1.*(t1-T)))+(k0.*D0./k1).*((k1.*(mu1-mu2)./(1+k1.*(t1-T)))-(a-((b.*k0.*(1-k1.*T))./k1)).*((T-k2)./(1+k1.*(t1-T)))+(b.*k0.*(mu2-T)./k1)-(1-k1.*T).*((T+mu2)./(1+k1.*(t1-T)))))+c4.*(-a2+b2.*t1+k0.*((a-b.*(1-k1.*T))./k1).*(1./(1+k1.*(t1-T)))+(b./k1)));
        end
    end
end
mesh(t1,TC)
7 comentarios
  Torsten
      
      
 el 15 de Mzo. de 2022
				I got the answer. But I need feasible solution. so , I want to apply optimization by using any one of search method.
But how can you be sure your method gives a feasible solution ?
As shown by the symbolic computation, there are three solutions for t1. Your Newton method will converge to any of them depending on the starting guess you choose for t1.
Respuestas (0)
Ver también
Categorías
				Más información sobre Surrogate Optimization en Help Center y File Exchange.
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


