Homework matlab problem - Determine r1, r2 and surface area - use matrix?
27 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Morley
el 28 de Sept. de 2011
Comentada: Walter Roberson
el 27 de Oct. de 2021
ive been staring at this problem and cant get anything. im a college student i dont u see what to do with the unknown variables
the unit we are in now is covering - input and output commands - display commands - fprintf - load commands
help will be greatly appreciated KEEP IT SIMPLE IF POSSIBLE. THIS IS ONLY CHAPTER 4 OF AN INTRO CLASS
an ice cream cone shaped as a frustum of a cone with R2=(1.2)(R1) is designed to have a volume of 1,000 cm cubed. Determine R1, R2 and the surface area , s, of the paper for containers with heights h of 8, 10, 12, 14, and 16 cm. Display the results in a table. The volume of the container, V, and the surface area of the paper are given by
V = (1/3)(pi)(h)(R1^2 + R2^2 + R1R2)
S = (pi)(R1+R2)sqrt[(R2-R1)^2 + h^2] + (pi)(R1^2 + R2^2)
3 comentarios
M VENKATESH
el 10 de Sept. de 2021
A cone shaped cup is designed to have a volume of 250 cm³. Determine the radius, r, of the base and the surface area, S, of the paper for cups with heights, h of 5,6,7,8, and 9 cm. The volume V, and the surface are of the paper are given by: V=1/2pi r²h und S = pi r sqrt(r²+h²). How to put this problem
Respuesta aceptada
UJJWAL
el 28 de Sept. de 2011
Hi Morley.
Below Is a code that solves your problem. Go through each step and understand. I hope it will help. For further details mail back
R1 = sym('R1','positive'); % Define R1 as a symbolic variable . It is positive
R2 = 1.2* R1; % Mention the relation between R1 and R2
table = zeros(5,4); % The table stores the h in the first column . The second column stores R1, the third one stores R2 and the fourth one stores s
table(:,1)=8:2:16; % Store the heights
for i = 1:5
x= solve((1/3)*pi*table(i,1)*(R1.^2 + R2.^2 + R1*R2)- 1000,'R1'); %Solve for the values of R1
table(i,2) = x;
table(i,3) = 1.2*x;
table(i,4) = pi * (1.3*x) *sqrt((0.2*x)^2 + table(i,1)^2) + pi*(x^2 + (1.2*x)^2); % Calcualte the surface area
end
Hope This helps
HAPPY TO HELP
UJJWAL
0 comentarios
Más respuestas (4)
Andrei Bobrov
el 28 de Sept. de 2011
EDITED
syms R1 R2 h S positive
r1s = subs([1000 - 1/3*pi*h*(R1^2 + R2^2 + R1*R2),...
pi*(R1+R2)*sqrt((R2-R1)^2 + h^2) + pi*(R1^2 + R2^2)],R2,1.2*R1)
r1s(1) = solve(r1s(1),R1)
f = cell(2,1); for j1 = 1:2, f{j1} = matlabFunction(r1s(j1)); end
h = (8:2:16)';
r1 = f{1}(h);
out = [h,r1,1.2*r1,f{2}(r1,h)]
1 comentario
Jackie Cortez
el 18 de Oct. de 2016
Is there a way to do this problem without using syms or subs? It keeps telling me I have to License and install the Symbolic Math Toolbox which I don't have.
1 comentario
Andrei Bobrov
el 26 de Feb. de 2019
Without Symbolic Math Toolbox:
Veq1000 = @(h,R1)1000 - 1357/356*h.*R1.^2;
s = @(h,R1)(R1*pi.*(61*R1 + 11*(R1.^2 + 25*h.^2).^(1/2)))/25;
h = (8:2:16)';
n = numel(h);
r1 = zeros(n,1);
for ii = 1:n
r1(ii) = fzero(@(R1)Veq1000(h(ii),R1),1);
end
out = [h,r1,1.2*r1,s(h,r1)];
Divya Pateriya
el 17 de Oct. de 2019
h = input('Please enter the array of height :');
v=input('please tell the volume of frustum :');
r1 = sqrt((3*v)./(pi*h.*3.64));
r2=(1.2).*r1;
s=pi.*(r1+r2).*sqrt((r2-r1).^2+h.^2)+pi.*(r1.^2+r2.*2);
Result=[h;r1;r2;s];
Table = Result'
1 comentario
John D'Errico
el 17 de Oct. de 2019
Editada: John D'Errico
el 17 de Oct. de 2019
Sigh. This does not display the result in a table. It creates a variable named Table. It only computes the result for ONE value of h, so there is no table created anyway.
dania tr
el 27 de Oct. de 2021
The surface area A of a sphere depends on its radius r as follows: A = 4 ᴫ r 2 . Write a MATLAB function to compute the surface area. Call your function to compute A at r = 5 and display the result.
1 comentario
Walter Roberson
el 27 de Oct. de 2021
I do not understand how this information can be used to answer Morley's Question about cones asked in 2011 ?
Ver también
Categorías
Más información sobre Surface and Mesh Plots en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!