initial phase angle calculation
10 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
mouh nyquist
el 16 de En. de 2015
Comentada: mouh nyquist
el 27 de En. de 2015
hello
I have this signal
clear all;clc;
t=0:0.0001:10;
tt=t(1:100000);%take 100 000 samples
a=30*pi/180; %phase (calculated form deg. to rad.)
b=90*pi/180; %phase (calculated form deg. to rad.)
ia=5*cos(2*pi*10*tt-a)+7*cos(2*pi*50*tt-b);
fs=1/0.0001; %sampling frequency
X=fft(ia); %FFT
df=fs/length(X); %frequency resolution
f=(0:1:length(X)/2)*df; %frequency axis
subplot(2,1,1);
M=abs(X)/length(ia)*2; %amplitude spectrum
plot(f,M(1:length(f)));
subplot(2,1,2);
P=angle(X)*180/pi; %phase spectrum (in deg.)
plot(f,P(1:length(f)));
this technique do not give a good results; I want any technique to get the right "a" an "d" the initial phase angle of 10 HZ and 50 HZ;
I know it is a hard question but please help me
2 comentarios
Respuesta aceptada
Jeremy
el 23 de En. de 2015
I ran your code it and seems to be working as-is. -30 and -90 deg at 10 and 50Hz
Más respuestas (1)
Jeremy
el 23 de En. de 2015
You can't expect them to be zero degrees just because there is no signal defined there. With no content at those frequencies, the angle shown will a result of spectral leakage and numerical noise. Zero degrees is no more valid than any other angle and you should always be looking a the PSD or something else to see which frequencies have a significant response.
3 comentarios
Jeremy
el 27 de En. de 2015
This is the correct method, any other method will be a round about way of doing the same thing.
Ver también
Categorías
Más información sobre Fourier Analysis and Filtering en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!