How to use feature input layer in transfer learning to concatenate the features with the output of fully-connected layer using MATLAB

5 visualizaciones (últimos 30 días)
Following the above MATHWORKS example. While performing transfer learning from vgg16, I want to add a concatenation layer with two inputs. One input will be from the last pre-trained layer of the vgg16, which is input 1 (in1) that is true. But, at input 2 (in2) I want to add the hand-crafted features (in mat file), but I cannot make it properly. Please guide me on this. I'm using featureInputLayer to get features and want to use them to concatenate with in1.
close all; clear all; clc;
% Load Pre-trained CNN Model
net = vgg16;
% Replacing the last 3 layers
TransNet = [
net.Layers(1:end-3)
% featureInputLayer(280,'Name','in2')
concatenationLayer(1,2,'Name','concat')
fullyConnectedLayer(4096, 'Name','fc8')
softmaxLayer('Name','sm')
classificationLayer('Name','classification')];
analyzeNetwork(TransNet);

Respuestas (0)

Categorías

Más información sobre Deep Learning Toolbox en Help Center y File Exchange.

Productos


Versión

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by