How to change architecture of conditional GAN to generate 224x224x3 images?

2 visualizaciones (últimos 30 días)
Alok
Alok el 4 de Ag. de 2022
Editada: Alok el 6 de Ag. de 2022
This example is for image size 64x64x3. I am wondering what changes should be done in layersGenerator and layersDiscriminator to generate 224x224x3 images.
This is my code:
inputSize = [224 224 3] or [256 256 3];
Note if Factor=2 (below) then I get image size 128x128x3. If Factor=4 then generated image size if 256x256x3. However, during the loop, it gives an error that trainedVariance is negative.
inputSize = [64 64 3];
Factor = 4; %if Factor =2 then 128x128x3 image size is generated;
inputSize = Factor*inputSize(1:2);
numClasses = 2;
augimds = augmentedImageDatastore(inputSize(1:2),XTrain,YTrain);
augimdsValidation = augmentedImageDatastore(inputSize(1:2),XValidation,YValidation);
numLatentInputs = 100;%100
embeddingDimension = 50;
numFilters = Factor*64;%224;
filterSize = 5;
projectionSize = Factor*[4 4 1024];
layersGenerator = [
featureInputLayer(numLatentInputs)
fullyConnectedLayer(prod(projectionSize))
functionLayer(@(X) feature2image(X,projectionSize),Formattable=true)
concatenationLayer(3,2,Name="cat");
transposedConv2dLayer(filterSize,4*numFilters,Stride=2,Cropping="same")
batchNormalizationLayer
reluLayer
transposedConv2dLayer(filterSize,2*numFilters,Stride=2,Cropping="same")
batchNormalizationLayer
reluLayer
transposedConv2dLayer(filterSize,numFilters,Stride=2,Cropping="same")
batchNormalizationLayer
reluLayer
transposedConv2dLayer(filterSize,3,Stride=2,Cropping="same")
tanhLayer];
lgraphGenerator = layerGraph(layersGenerator);
layers = [
featureInputLayer(1)
embeddingLayer(embeddingDimension,numClasses)
fullyConnectedLayer(prod(projectionSize(1:2)))
functionLayer(@(X) feature2image(X,[projectionSize(1:2) 1]),Formattable=true,Name="emb_reshape")];
lgraphGenerator = addLayers(lgraphGenerator,layers);
lgraphGenerator = connectLayers(lgraphGenerator,"emb_reshape","cat/in2");
netG = dlnetwork(lgraphGenerator);
dropoutProb = 0.75;
%numFilters = 64;
scale = 0.2;
filterSize = 5;
layersDiscriminator = [
imageInputLayer(inputSize,Normalization="none")
dropoutLayer(dropoutProb)
concatenationLayer(3,2,Name="cat")
convolution2dLayer(filterSize,numFilters,Stride=2,Padding="same")
leakyReluLayer(scale)
convolution2dLayer(filterSize,2*numFilters,Stride=2,Padding="same")
batchNormalizationLayer
leakyReluLayer(scale)
convolution2dLayer(filterSize,4*numFilters,Stride=2,Padding="same")
batchNormalizationLayer
leakyReluLayer(scale)
convolution2dLayer(filterSize,8*numFilters,Stride=2,Padding="same")
batchNormalizationLayer
leakyReluLayer(scale)
convolution2dLayer(Factor*4,1)];
lgraphDiscriminator = layerGraph(layersDiscriminator);
layers = [
featureInputLayer(1)
embeddingLayer(embeddingDimension,numClasses)
fullyConnectedLayer(prod(inputSize(1:2)))
functionLayer(@(X) feature2image(X,[inputSize(1:2) 1]),Formattable=true,Name="emb_reshape")];
lgraphDiscriminator = addLayers(lgraphDiscriminator,layers);
lgraphDiscriminator = connectLayers(lgraphDiscriminator,"emb_reshape","cat/in2");
netD = dlnetwork(lgraphDiscriminator);
However, the above code gives an error at
[~,~,gradientsG,gradientsD,stateG,scoreG,scoreD] = ...
dlfeval(@modelLoss2,netG,netD,X,T,Z,flipFactor);
The size of generated image at
[XGenerated,stageG] = forward(netG,Z,T);
is 256x256x3. However, an error comes stating that trainedVariance is not positive
Could you assist me which transposedConv2dLayer to change to adjust the size to 224x224x3 or 256x256x3?
Thanks for your help

Respuestas (0)

Categorías

Más información sobre Image Data Workflows en Help Center y File Exchange.

Productos


Versión

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by