improve the performance of nprtool
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
maryam
el 21 de Feb. de 2015
Editada: Greg Heath
el 25 de Oct. de 2015
I used the neural network toolbox ( nprtool ) for classifying my objects. i used 75% of data for training and 15% for both validation and testing.also i considered 50 neurons for hidden layers. the progress stops because of validation checks (at 6). how can i improve the performance of this network? i couldn't find out how to change validation check or gradient ,....if you have any suggestion i will be very appreciate to hear that.
0 comentarios
Respuesta aceptada
Greg Heath
el 22 de Feb. de 2015
Insufficient information
Which of the MATLAB classification example datasets are you using?
help nndatasets
doc nndatasets
Number of classes c =?
Input vector dimensionality I = 1
Number of examples N = ?
[ I N ] = size(input)
[ O N ] = size(target)% O = c
Default 70/15/15 data division? (75/15/15 doesn't add to 100)
Some problems require multiple(e.g., 10) designs for every value of hidden nodes that are tried.
For example, search the NEWSGROUP and ANSWERS using
greg patternnet Ntrials
Sorry I can't give you much advice on how to optimize the use of nprtool. However, consulting my command line code should be more than worthwhile.
Hope this helps.
Thank you for formally accepting my answer
Greg.
2 comentarios
Greg Heath
el 22 de Feb. de 2015
Editada: Greg Heath
el 25 de Oct. de 2015
I recommend substantially reducing the 300-dimensional inputs using PLS. Then consult some of my classification posts as recommended above.
Hope this helps.
Greg
Más respuestas (1)
smriti garg
el 23 de Oct. de 2015
Hello Sir,
As in the GUI of nprtool there is a option of 'retrain' to achieve better performance....Similarly, when using the advanced script of nprtool is there some method to retrain the 'net' function to achieve better peroformance.
Please suggest some solution.
Thanx in advance for help.
0 comentarios
Ver también
Categorías
Más información sobre Image Data Workflows en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!