Free-knot spline approximation (BSFK) problem
19 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Michal
el 22 de Sept. de 2022
Editada: Bruno Luong
el 12 de En. de 2023
@BrunoLuong
My data acquisition system produce periodically 1-D measured noised data with the fixed time window length W. I want to produce smoothed data for each window W separately, with specific constraints on continuous (k=2) or smooth (k = 3 or 4) processed signal connections between consecutive time measurement windows. So, for each window W I get finally separate "pp" structure. How to set proper BSFK options setting to fulfil these constraints?
The second question is: Is there any method how to merge separate "pp" structures to one "pp" structure for several processing windows at one?
Add note: May by some processing windows overlap could be required. Do you have any experiance with using BSFK in streaming regime?
13 comentarios
Bruno Luong
el 23 de Sept. de 2022
Editada: Bruno Luong
el 23 de Sept. de 2022
You could try to recursively enforce the continuity for function/derivative when you call BSFK on the next interval using the pp of the previous interval, just tell BSFK to have function/derivative of the most left knot (current) = previous pp function/derivative at the right knot (previous).
Respuesta aceptada
Bruno Luong
el 23 de Sept. de 2022
Editada: Bruno Luong
el 12 de En. de 2023
Reference to BSFK function https://fr.mathworks.com/matlabcentral/fileexchange/25872-free-knot-spline-approximation
Here is the recursive pointwise constraint. You'll see it does the job (zoom in) the transition is not nice
data=load('result_4_8.mat')
data=data.result;
[m,n] = size(data);
x = cellfun(@(data) data.x, data, 'unif', 0);
y = cellfun(@(data) data.y, data, 'unif', 0);
j = 1; % n
close all
figure
hold on
for i = 1:m
% Normalize data so that dy/dx is comparable to y
xij = x{i,j}/10000;
yij = y{i,j}/10000;
options = struct('lambda', 1e-8);
if i >= 2
xleft = pp.breaks(end);
yleft = ppval(pp,xleft);
ydleft = ppval(ppder(pp),xleft);
xij = [xleft; xij];
yij = [yleft; yij];
pntcon = struct('p', {0 1}, 'x', {xleft,xleft}, 'v', {yleft ydleft});
options.pntcon = pntcon;
end
pp =BSFK(xij, yij, 4, [], [], options);
xi = linspace(min(xij),max(xij),1000);
yi = ppval(pp, xi);
plot(xij, yij,'c.');
plot(xi, yi, 'r', 'Linewidth', 2);
drawnow
end
function ppd = ppder(pp)
ppd = pp;
coefs = ppd.coefs;
n = size(coefs,2);
ppd.coefs = coefs(:,1:n-1).*(n-1:-1:1);
ppd.order = ppd.order-1;
end
5 comentarios
Bruno Luong
el 29 de Sept. de 2022
I haven't not studied the complexity of BSFK.
But it seems to me the linear dependency to number of knots is not quite true, I would say it is more like quadratic.
Más respuestas (0)
Ver también
Categorías
Más información sobre Splines en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!