can i use k-means algorithm for segmenting the cell nucleus and cytoplasm?
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
sou
el 7 de Mzo. de 2015
Editada: Alex Taylor
el 23 de Abr. de 2015
i have used k-means clustering algorithm for segmenting cells but it doesn't. i didn't know about k-means algorithm in detail. i don't know whether this algorithm suits or not. suggest me a way. i have attached my image that i have been working. the inner dark region is nucleus and outer region is cytoplasm.
<<
>>
0 comentarios
Respuesta aceptada
Image Analyst
el 7 de Mzo. de 2015
This will walk you through it: http://www.mathworks.com/products/demos/image/color_seg_k/ipexhistology.html
7 comentarios
Braiki Marwa
el 21 de Abr. de 2015
Svp j'ai utilisé cet algorithme mais il me renvoie toujours erreur!!!!!!!!!!!!!!!!!!
Image Analyst
el 21 de Abr. de 2015
sou, then you need to improve the color segmentation algorithm.
Braiki, I'm not sure what you said. Something about errors, but you didn't provide the errors or the code.
Más respuestas (1)
Alex Taylor
el 23 de Abr. de 2015
Editada: Alex Taylor
el 23 de Abr. de 2015
In this case, I found that I was able to get a reasonably good segmentation of the nucleus by working directly in the RGB colorspace instead of LAB as is done in the example:
%%Read and display input image
A = imread('http://www.mathworks.com/matlabcentral/answers/uploaded_files/26706/inter4.JPG');
A = im2double(A);
imshow(A)
numRows = size(A,1);
numCols = size(A,2);
numPoints = numRows*numCols;
X = reshape(A,numRows*numCols,[]);
Normalize features to be zero mean, unit variance
X = bsxfun(@minus, X, mean(X));
X = bsxfun(@rdivide,X,std(X));
%%Classify color features using kmeans
% Repeat k-means clustering five times to avoid local minima when searching
% for means that minimize objective function. The only prior information
% assumed in this example is how many distinct regions of texture are
% present in the image being segmented. There are two distinct regions in
% this case.
L = kmeans(X,3,'Replicates',5);
%%Visualize segmentation using |label2rgb|
L = reshape(L,[numRows numCols]);
figure
imshow(label2rgb(L))
%%Visualize segmented image using |imshowpair|
% Use imshowpair to examine the foreground and background images that
% result from the mask BW that is associated with the label matrix L.
Aseg1 = zeros(size(A),'like',A);
Aseg2 = zeros(size(A),'like',A);
BW = L == 2;
BW = repmat(BW,[1 1 3]);
Aseg1(BW) = A(BW);
Aseg2(~BW) = A(~BW);
figure
imshowpair(Aseg1,Aseg2,'montage');
0 comentarios
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!