How to solve an ODE with three equation that are dependent on each other
5 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I have these equations that are supposed to tell me how the concentration of C changes over time. I am trying to use ODE 45 but I keep getting error
v1=0.3;
k2 = 0.3; %constant
C = v1-dpdt; %ODE for network
dpdt = k2*C; %Rate of equation
for tspan = 0:100
dpdt = @(PEP,t) (k2*C*t)
[PEP, t] = ode45(dpdt,tspan,0)
end
1 comentario
Respuestas (1)
Star Strider
el 19 de Oct. de 2022
Some of this is difficult to interpret.
My best guess at a solution —
v1=0.3;
k2 = 0.3; %constant
C = v1;
% C = v1-dpdt; %ODE for network
% dpdt = k2*C; %Rate of equation
tspan = 0:100;
dpdt = @(PEP,t) (k2*C*t);
[t,PEP] = ode45(dpdt,tspan,k2);
figure
plot(t,PEP)
grid
xlabel('t')
ylabel('PEP')
Make appropriate changes in case my guess is in error.
.
0 comentarios
Ver también
Categorías
Más información sobre Ordinary Differential Equations en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
